Skip to main content

Label-Free Quantitative Phosphoproteomics for Algae

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2139))

Abstract

The unicellular alga Chlamydomonas reinhardtii is a model photosynthetic organism for the study of microalgal processes. Along with genomic and transcriptomic studies, proteomic analysis of Chlamydomonas has led to an increased understanding of its metabolic signaling as well as a growing interest in the elucidation of its phosphorylation networks. To this end, mass spectrometry-based proteomics has made great strides in large-scale protein quantitation as well as analysis of posttranslational modifications (PTMs) in a high-throughput manner. An accurate quantification of dynamic PTMs, such as phosphorylation, requires high reproducibility and sensitivity due to the substoichiometric levels of modified peptides, which can make depth of coverage challenging. Here we present a method using TiO2-based phosphopeptide enrichment paired with label-free LC-MS/MS for phosphoproteome quantification. Three technical replicate samples in Chlamydomonas were processed and analyzed using this approach, quantifying a total of 1775 phosphoproteins with a total of 3595 phosphosites. With a median CV of 21% across quantified phosphopeptides, implementation of this method for differential studies provides highly reproducible analysis of phosphorylation events. While the culturing and extraction methods used are specific to facilitate coverage in algal species, this approach is widely applicable and can easily extend beyond algae to other photosynthetic organisms with minor modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    Article  CAS  Google Scholar 

  2. Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  Google Scholar 

  3. Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  Google Scholar 

  4. Zones JM, Blaby IK, Merchant SS et al (2015) High-resolution profiling of a synchronized diurnal transcriptome from Chlamydomonas reinhardtii reveals continuous cell and metabolic differentiation. Plant Cell 27:2743–2769

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller R, Wu G, Deshpande RR et al (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752

    Article  CAS  Google Scholar 

  6. Wang H, Alvarez S, Hicks LM (2012) Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. J Proteome Res 11:487–501

    Article  CAS  Google Scholar 

  7. Roustan V, Bakhtiari S, Roustan P-J et al (2017) Quantitative in vivo phosphoproteomics reveals reversible signaling processes during nitrogen starvation and recovery in the biofuel model organism Chlamydomonas reinhardtii. Biotechnol Biofuels 10:280. https://doi.org/10.1186/s13068-017-0949-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krebs EG, Fischer EH (1955) Phosphorylase activity of skeletal muscle extracts. J Biol Chem 216:113–120

    CAS  PubMed  Google Scholar 

  9. Fischer EH, Krebs EG (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem 216:121–132

    CAS  PubMed  Google Scholar 

  10. Eriksson J, Fenyö D (2010) Modeling experimental design for proteomics. Methods Mol Biol 673:223–230

    Article  CAS  Google Scholar 

  11. Blackburn K, Goshe MB (2009) Challenges and strategies for targeted phosphorylation site identification and quantification using mass spectrometry analysis. Brief Funct Genomic Proteomic 8:90–103

    Article  CAS  Google Scholar 

  12. Dunn JD, Reid GE, Bruening ML (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev 29:29–54

    CAS  PubMed  Google Scholar 

  13. Kokubu M, Ishihama Y, Sato T et al (2005) Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal Chem 77:5144–5154

    Article  CAS  Google Scholar 

  14. Ruprecht B, Koch H, Medard G et al (2015) Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol Cell Proteomics 14:205–215

    Article  CAS  Google Scholar 

  15. Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  Google Scholar 

  16. Tsai C-F, Wang Y-T, Chen Y-R et al (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7:4058–4069

    Article  CAS  Google Scholar 

  17. Ye J, Zhang X, Young C et al (2010) Optimized IMAC protocol for phosphopeptide recovery from complex biological samples. J Proteome Res 9:3561–3573

    Article  CAS  Google Scholar 

  18. Aryal UK, Ross ARS (2010) Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Rapid Commun Mass Spectrom 24:219–231

    Article  CAS  Google Scholar 

  19. Werth EG, McConnell EW, Lianez IC et al (2019) Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. New Phytol 221:247–260

    Article  CAS  Google Scholar 

  20. Neilson KA, Ali NA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  CAS  Google Scholar 

  21. Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  Google Scholar 

  22. Werth EG, McConnell EW, Gilbert TSK et al (2017) Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics. Plant J 89:416–426

    Article  CAS  Google Scholar 

  23. Wang H, Gau B, Slade WO et al (2014) The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 13:2337–2353

    Article  CAS  Google Scholar 

  24. Hutner SH, Provasoli L, Schatz A et al (1950) Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc Am Philos Soc 94:152–170

    CAS  Google Scholar 

  25. Vizcaíno JA, Côté RG, Csordas A et al (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41:D1063–D1069

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a National Science Foundation CAREER award (MCB-1552522) awarded to L.M.H. NSF MRI (CHE-1726291) supported the purchase of the Q-Exactive HF-X mass spectrometer, and we thank Dr. Brandie Ehrmann for training on the HF-X instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie M. Hicks .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Table S1

Peptide measurements exported from Progenesis (XLSX 10131 kb)

Table S2

Parsed and imputed data (XLSX 338 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ford, M.M., Lawrence, S.R., Werth, E.G., McConnell, E.W., Hicks, L.M. (2020). Label-Free Quantitative Phosphoproteomics for Algae. In: Jorrin-Novo, J., Valledor, L., Castillejo, M., Rey, MD. (eds) Plant Proteomics. Methods in Molecular Biology, vol 2139. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0528-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0528-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0527-1

  • Online ISBN: 978-1-0716-0528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics