Skip to main content

Modeling Experimental Design for Proteomics

  • Protocol
  • First Online:
Computational Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 673))

Abstract

The complexity of proteomes makes good experimental design essential for their successful investigation. Here, we describe how proteomics experiments can be modeled and how computer simulations of these models can be used to improve experimental designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ghaemmaghami, W.K. Huh, K. Bower, R.W. Howson, A. Belle, N. Dephoure, E.K. Oā€™Shea, and J.S. Weissman (2003) Global analysis of protein expression in yeast, Nature, 425, 737ā€“41.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. N.L. Anderson and N.G. Anderson (2002) The human plasma proteome: history, character, and diagnostic prospects, Mol Cell Proteomics, 1, 845ā€“67.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. R. Aebersold and M. Mann (2003) Mass spectrometry-based proteomics, Nature, 422, 198ā€“207.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. H. Wang, S.G. Clouthier, V. Galchev, D.E. Misek, U. Duffner, C.K. Min, R. Zhao, J. Tra, G.S. Omenn, J.L. Ferrara, and S.M. Hanash (2005) Intact-protein-based high-resolution three-dimensional quantitative analysis system for proteome profiling of biological fluids, Mol Cell Proteomics, 4, 618ā€“25.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Y. Ishihama (2005) Proteomic LC-MS systems using nanoscale liquid chromatography with tandem mass spectrometry, J Chromatogr A, 1067, 73ā€“83.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. B.J. Cargile, J.L. Bundy, T.W. Freeman, and J.L. Stephenson, Jr. (2004) Gel based isoelectric focusing of peptides and the utility of isoelectric point in protein identification, J Proteome Res, 3, 112ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. J.J. Coon, J.E. Syka, J. Shabanowitz, and D.F. Hunt (2005) Tandem mass spectrometry for peptide and protein sequence analysis, Biotechniques, 38, 519, 521, 523.

    Google ScholarĀ 

  8. R.S. Johnson, M.T. Davis, J.A. Taylor, and S.D. Patterson (2005) Informatics for protein identification by mass spectrometry, Methods, 35, 223ā€“36.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. L. McHugh and J.W. Arthur (2008) Computational methods for protein identification from mass spectrometry data, PLoS Comput Biol, 4, e12.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. D. Fenyo (2000) Identifying the proteome: software tools, Curr Opin Biotechnol, 11, 391ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. J. Eriksson and D. Fenyo (2007) Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs, Nat Biotechnol, 25, 651ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. O.V. Krokhin, R. Craig, V. Spicer, W. Ens, K.G. Standing, R.C. Beavis, and J.A. Wilkins (2004) An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC: its application to protein peptide mapping by off-line HPLC-MALDI MS, Mol Cell Proteomics, 3, 908ā€“19.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

This work was supported by funding provided by the National Institutes of Health Grants RR00862 and RR022220, the Carl Trygger foundation, and the Swedish research council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Eriksson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eriksson, J., Fenyƶ, D. (2010). Modeling Experimental Design for Proteomics. In: Fenyƶ, D. (eds) Computational Biology. Methods in Molecular Biology, vol 673. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-842-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-842-3_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-841-6

  • Online ISBN: 978-1-60761-842-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics