Skip to main content

Determining the Protective Activity of IDPs Under Partial Dehydration and Freeze-Thaw Conditions

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Abstract

Unlike for structured proteins, the study of intrinsically disordered proteins (IDPs) requires selection of ad hoc assays and strategies to characterize their dynamic structure and function. Late embryogenesis abundant (LEA) proteins are important plant IDPs closely related to water-deficit stress response. Diverse hypothetical functions have been proposed for LEA proteins, such as membrane stabilizers during cold stress, oxidative regulators acting as ion metal binding molecules, and protein protectants during dehydration and cold/freezing conditions. Here we present two detailed protocols to characterize IDPs with potential protein/enzyme protection activity under partial dehydration and freeze-thaw treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208. https://doi.org/10.1038/nrm1589

    Article  CAS  PubMed  Google Scholar 

  2. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3):415–427. https://doi.org/10.1002/1097-0134(20001115)41:3<415::Aid-Prot130>3.3.Co;2-Z

    Article  CAS  PubMed  Google Scholar 

  3. Dunker AK, Cortese MS, Romero P et al (2005) Flexible nets - the roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148. https://doi.org/10.1111/j.1742-4658.2005.04948.x

    Article  CAS  Google Scholar 

  4. Darling AL, Uversky VN (2018) Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front Genet 9. https://doi.org/10.3389/Fgene.2018.00158

  5. Fonin AV, Darling AL, Kuznetsova IM et al (2018) Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cell Mol Life Sci 75(21):3907–3929. https://doi.org/10.1007/s00018-018-2894-9

    Article  CAS  PubMed  Google Scholar 

  6. Alberti S (2017) Phase separation in biology. Curr Biol 27(20):R1097–R1102. https://doi.org/10.1016/j.cub.2017.08.069

    Article  CAS  PubMed  Google Scholar 

  7. Covarrubias AA, Cuevas-Velazquez CL, Romero-Perez PS et al (2017) Structural disorder in plant proteins: where plasticity meets sessility. Cell Mol Life Sci 74(17):3119–3147. https://doi.org/10.1007/s00018-017-2557-2

    Article  CAS  PubMed  Google Scholar 

  8. Battaglia M, Olvera-Carrillo Y, Garciarrubio A et al (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148(1):6–24. https://doi.org/10.1104/pp.108.120725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Y, Wang L, Xing X et al (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54(6):944–959. https://doi.org/10.1093/pcp/pct047

    Article  CAS  PubMed  Google Scholar 

  10. Muvunyi BP, Yan Q, Wu F et al (2018) Mining late embryogenesis abundant (LEA) family genes in Cleistogenes songorica, a xerophyte perennial desert plant. Int J Mol Sci 19(11). https://doi.org/10.3390/Ijms19113430

  11. Tang XL, Wang HY, Chu LY et al (2016) KvLEA, a new isolated late embryogenesis abundant protein gene from Kosteletzkya virginica responding to multiabiotic stresses. Biomed Res Int 2016:1. https://doi.org/10.1155/2016/9823697

    Article  CAS  Google Scholar 

  12. Campos F, Cuevas-Velazquez C, Fares MA et al (2013) Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Mol Gen Genomics 288(10):503–517. https://doi.org/10.1007/s00438-013-0768-2

    Article  CAS  Google Scholar 

  13. Boothby TC, Tapia H, Brozena AH et al (2017) Tardigrades use intrinsically disordered proteins to survive desiccation. Mol Cell 65(6):975. https://doi.org/10.1016/j.molcel.2017.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kikawada T, Nakahara Y, Kanamori Y et al (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348(1):56–61. https://doi.org/10.1016/j.bbrc.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  15. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A et al (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275(8):5668–5674. https://doi.org/10.1074/jbc.275.8.5668

    Article  CAS  PubMed  Google Scholar 

  16. Reyes JL, Rodrigo MJ, Colmenero-Flores JM et al (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28(6):709–718. https://doi.org/10.1111/j.1365-3040.2005.01317.x

    Article  CAS  Google Scholar 

  17. Reyes JL, Campos F, Wei H et al (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31(12):1781–1790. https://doi.org/10.1111/j.1365-3040.2008.01879.x

    Article  CAS  PubMed  Google Scholar 

  18. Cuevas-Velazquez CL, Saab-Rincon G, Reyes JL et al (2016) The unstructured N-terminal region of Arabidopsis group 4 late embryogenesis abundant (LEA) proteins is required for folding and for chaperone-like activity under water deficit. J Biol Chem 291(20):10893–10903. https://doi.org/10.1074/jbc.M116.720318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim SX, Camdere G, Hu XC et al (2018) Synergy between the small intrinsically disordered protein Hsp12 and trehalose sustain viability after severe desiccation. Elife 7. https://doi.org/10.7554/eLife.383370.001

  20. Dang NX, Hincha DK (2011) Identification of two hydrophilins that contribute to the desiccation and freezing tolerance of yeast (Saccharomyces cerevisiae) cells. Cryobiology 62(3):188–193. https://doi.org/10.1016/j.cryobiol.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  21. Lopez-Martinez G, Rodriguez-Porrata B, Margalef-Catala M et al (2012) The STF2p hydrophilin from Saccharomyces cerevisiae is required for dehydration stress tolerance. PLoS One 7(3):e33324. https://doi.org/10.1371/journal.pone.0033324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lv AM, Su LT, Liu XC et al (2018) Characterization of Dehydrin protein, CdDHN4-L and CdDHN4-S, and their differential protective roles against abiotic stress in vitro. BMC Plant Biol 18:299. https://doi.org/10.1186/S12870-018-1511-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157. https://doi.org/10.1042/Bj20041931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grelet J, Benamar A, Teyssier E et al (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137(1):157–167. https://doi.org/10.1104/pp.104.052480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158(10):1333–1339. https://doi.org/10.1078/0176-1617-00600

    Article  CAS  Google Scholar 

  26. Furuki T, Shimizu T, Chakrabortee S et al (2012) Effects of group 3 LEA protein model peptides on desiccation-induced protein aggregation. Biochim Biophys Acta 1824(7):891–897. https://doi.org/10.1016/j.bbapap.2012.04.013

    Article  CAS  PubMed  Google Scholar 

  27. Szollosi E, Hazy E, Szasz C et al (2007) Large systematic errors compromise quantitation of intrinsically unstructured proteins. Anal Biochem 360(2):321–323. https://doi.org/10.1016/j.ab.2006.10.027

    Article  CAS  PubMed  Google Scholar 

  28. Weist S, Eravci M, Broedel O et al (2008) Results and reliability of protein quantification for two-dimensional gel electrophoresis strongly depend on the type of protein sample and the method employed. Proteomics 8(16):3389–3396. https://doi.org/10.1002/pmic.200800236

    Article  CAS  PubMed  Google Scholar 

  29. Contreras-Martos S, Nguyen HH, Nguyen PN et al (2018) Quantification of intrinsically disordered proteins: a problem not fully appreciated. Front Mol Biosci 5. https://doi.org/10.3389/Fmolb.2018.00083

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra A. Covarrubias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rendón-Luna, D.F., Romero-Pérez, P.S., Cuevas-Velazquez, C.L., Reyes, J.L., Covarrubias, A.A. (2020). Determining the Protective Activity of IDPs Under Partial Dehydration and Freeze-Thaw Conditions. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics