Skip to main content

Whole Cell Entrapment Techniques

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2100))

Abstract

Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others.

Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation, and bioprocess scale-up feasibility.

Cell entrapment is the most widely used technique for whole cell immobilization. This technique—in which the cells are included within a rigid network—is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100% in most cases).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guisan JM (2006) Immobilization of enzymes and cells. Humana Press, Totowa, NJ

    Book  Google Scholar 

  2. Nedovic V, Willaert R (2004) Fundamentals of cell immobilisation, vol 1. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  3. Trelles JA, Valino AL, Runza V, Lewkowicz ES, Iribarren AM (2005) Screening of catalytically active microorganisms for the synthesis of 6-modified purine nucleosides. Biotechnol Lett 27:759–763

    Article  CAS  Google Scholar 

  4. Trelles JA, Fernández-Lucas J, Condezo LA, Sinisterra JV (2004) Nucleoside synthesis by immobilised bacterial whole cells. J Mol Catal B Enzym 30:219–227

    Article  CAS  Google Scholar 

  5. Fernández-Lucas J, Condezo LA, Martinez- Lagos F, Sinisterra JV (2007) Synthesis of 2′-deoxyibosylnucleosides using new 2′-deoxyribosyltransferase microorganism producers. Enzym Microb Technol 40:1147–1155

    Article  Google Scholar 

  6. Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319

    Article  CAS  Google Scholar 

  7. van der Sluis C, Mulder AN, Grolle KC, Engbers GH, ter Schure EG, Tramper J, Wijffels RH (2000) Immobilized soy-sauce yeasts: development and characterization of a new polyethylene-oxide support. J Biotechnol 80:179–188

    Article  Google Scholar 

  8. Hung CP, Lo H-F, Hsu WH, Chen SC, Lin LL (2008) Immobilization of Escherichia coli novablue γ-glutamyltranspeptidase in Ca-alginate- κ -carrageenan beads. Appl Biochem Biotechnol 150:157–170

    Article  CAS  Google Scholar 

  9. Hae S (2012) Agarose-gel-immobilized recombinant bacterial biosensors for simple and disposable on-site detection of phenolic compounds. Appl Microbiol Biotechnol 93:1895–1904

    Article  Google Scholar 

  10. Yujian W, Xiaojuan Y, Wei T, Hongyu L (2007) High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. J Microbiol Methods 68:212–217

    Article  Google Scholar 

  11. Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    Article  CAS  Google Scholar 

  12. Hulst AC, Tramper J, Van’t Riet K, Westerbeek JM (1985) A new technique for the production of immobilized biocatalyst in large quantities. Biotechnol Bioeng 27:870–876

    Article  CAS  Google Scholar 

  13. Arvizu-Higuera DL, Hernández-Carmona G, Rodríguez-Montesinos YE (2002) Parameters affecting the conversion of alginic acid to sodium alginate. Cienc Mar 28:27–36

    Article  CAS  Google Scholar 

  14. Britos CN, Cappa VA, Rivero CW, Sambeth JE, Lozano ME, Trelles JA (2012) Biotransformation of halogenated 2′-deoxyribosides by immobilized lactic acid bacteria. J Mol Catal B Enzym 79:49–53

    Article  CAS  Google Scholar 

  15. Ha J, Engler CR, Wild JR (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100:1138–1142

    Article  CAS  Google Scholar 

  16. Yujian W, Xiaojuan Y, Hongyu L, Wei T (2006) Immobilization of Acidithiobacillus ferrooxidans with complex of PVA an sodium alginate. Polym Degrad Stabil 91:2408–2414

    Article  Google Scholar 

  17. Jeon C, Park JY, Yoo YJ (2002) Characteristics of metal removal using carboxylated alginic acid. Water Res 36:1814–1824

    Article  CAS  Google Scholar 

  18. Rivero CW, Britos CN, Lozano ME, Sinisterra JV, Trelles JA (2012) Green biosynthesis of floxuridine by immobilized microorganisms. FEMS Microbiol Lett 331:31–36

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica, Universidad Nacional de Quilmes and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Trelles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trelles, J.A., Rivero, C.W. (2020). Whole Cell Entrapment Techniques. In: Guisan, J., Bolivar, J., López-Gallego, F., Rocha-Martín, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0215-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0215-7_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0214-0

  • Online ISBN: 978-1-0716-0215-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics