Skip to main content

Quantitative Jasmonate Profiling Using a High-Throughput UPLC-NanoESI-MS/MS Method

  • Protocol
  • First Online:
Jasmonate in Plant Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2085))

Abstract

Jasmonic acid (JA) and its many derivatives-collectively referred as jasmonates-occur ubiquitously in land plants and regulate a wide range of stress-responses and development. Measuring these signaling compounds is complicated by the large number of jasmonate derivatives and the comparatively low concentration of these metabolites in plant tissues. We, here, present a selective and sensitive method consisting of a two-phase extraction coupled with liquid chromatography, nanoelectrospray ionization, and mass spectrometry to determine jasmonate levels in tissues and fluids of various plant species. The application of stable deuterium-labelled standards in combination with authentic standards allows the absolute quantification of a multitude of jasmonates and, additionally, the semi-quantitative analysis of further metabolites from the jasmonate pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wasternack C, Song S (2017) Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot 68(6):1303–1321. https://doi.org/10.1093/jxb/erw443

    Article  CAS  PubMed  Google Scholar 

  2. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111(6):1021–1058. https://doi.org/10.1093/aob/mct067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wastermack C (2018) Jasmonates - news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int J Mol Sci 19(9):2539. https://doi.org/10.3390/ijms19092539

    Article  CAS  Google Scholar 

  4. Kramell R, Atzorn R, Schneider G, Miersch O, Brückner C, Schmidt J, Sembdner G, Parthier B (1995) Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J Plant Growth Regul 14(1):29. https://doi.org/10.1007/bf00212643

    Article  CAS  Google Scholar 

  5. Mueller MJ, Brodschelm W (1994) Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionization-mass spectrometry. Anal Biochem 218(2):425–435. https://doi.org/10.1006/abio.1994.1202

    Article  CAS  PubMed  Google Scholar 

  6. Birkemeyer C, Kolasa A, Kopka J (2003) Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J Chromatogr A 993(1–2):89–102. https://doi.org/10.1016/S0021-9673(03)00356-X

    Article  CAS  PubMed  Google Scholar 

  7. Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O (2014) UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105:147–157. https://doi.org/10.1016/j.phytochem.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  8. Trapp MA, De Souza GD, Rodrigues-Filho E, Boland W, Mithöfer A (2014) Validated method for phytohormone quantification in plants. Front Plant Sci 5:417. https://doi.org/10.3389/fpls.2014.00417

    Article  Google Scholar 

  9. Pan X, Welti R, Wang X (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Prot 5(6):986–992. https://doi.org/10.1038/nprot.2010.37

    Article  CAS  Google Scholar 

  10. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146. https://doi.org/10.1194/jlr.D700041-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feussner K, Feussner I (2019) Comprehensive LC-MS-based metabolite fingerpriting approach for plant and fungal-derived samples. Methods Mol Biol 1978:167–185. https://doi.org/10.1007/978-1-4939-9236-2_11

    Chapter  Google Scholar 

  12. Bao J, Gao X, Jones AD (2014) Unusual negative charge-directed fragmentation: collision-induced dissociation of cyclopentenone oxylipins in negative ion mode. Rapid Commun Mass Spectrom 28(5):457–464. https://doi.org/10.1002/rcm.6803

    Article  CAS  PubMed  Google Scholar 

  13. Floková K, Feussner K, Herrfurth C, Miersch O, Mik V, Tarkowská D, Strnad M, Feussner I, Wasternack C, Novák O (2016) A previously undescribed jasmonate compound in flowering Arabidopsis thaliana – The identification of cis-(+)-OPDA-Ile. Phytochemistry 122(2):230–237. https://doi.org/10.1016/j.phytochem.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  14. Glauser G, Wolfender J-L (2013) A non-targeted approach for extended liquid chromatography-mass spectrometry profiling of free and esterified jasmonates after wounding. In: Goossens A, Pauwels L (eds) Jasmonate signaling: methods and protocols. Humana Press, Totowa, NJ, pp 123–134. https://doi.org/10.1007/978-1-62703-414-2_10

    Chapter  Google Scholar 

  15. Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gomez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53(22):8437–8442. https://doi.org/10.1021/jf050884b

    Article  CAS  PubMed  Google Scholar 

  16. Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278(20):17895–17900. https://doi.org/10.1074/jbc.M211943200

    Article  CAS  PubMed  Google Scholar 

  17. Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283(24):16400–16407. https://doi.org/10.1074/jbc.M801760200

    Article  CAS  PubMed  Google Scholar 

  18. Kitaoka N, Kawaide H, Amano N, Matsubara T, Nabeta K, Takahashi K, Matsuura H (2014) CYP94B3 activity against jasmonic acid amino acid conjugates and the elucidation of 12-O-β-glucopyranosyl-jasmonoyl-l-isoleucine as an additional metabolite. Phytochemistry 99:6–13. https://doi.org/10.1016/j.phytochem.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  19. Bruckhoff V, Haroth S, Feussner K, König S, Brodhun F, Feussner I (2016) Functional characterization of CYP94-genes and identification of a novel jasmonate catabolite in flowers. PLoS One 11(7):e0159875. https://doi.org/10.1371/journal.pone.0159875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Widemann E, Heitz T, Miesch L, Miesch M, Heinrich C, Pinot F, Lugan R (2015) Identification of the 12-oxojasmonoyl-isoleucine, a new intermediate of jasmonate metabolism in Arabidopsis, by combining chemical derivatization and LC-MS/MS analysis. Metabolomics 11(4):991–997. https://doi.org/10.1007/s11306-014-0754-7

    Article  CAS  Google Scholar 

  21. Iven T, König S, Singh S, Braus-Stromeyer SA, Bischoff M, Tietze LF, Braus GH, Lipka V, Feussner I, Dröge-Laser W (2012) Transcriptional activation and production of tryptophan-derived secondary metabolites in Arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. Mol Plant 5(6):1389–1402. https://doi.org/10.1093/mp/sss044

    Article  CAS  PubMed  Google Scholar 

  22. Göbel C, Feussner I (2009) Methods for the analysis of oxylipins in plants. Phytochemistry 70:1485–1503. https://doi.org/10.1016/j.phytochem.2009.07.040

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Halitschke R, Kang JH, Berg A, Harnisch F, Baldwin IT (2007) Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta 226(1):159–167. https://doi.org/10.1007/s00425-007-0477-3

    Article  CAS  PubMed  Google Scholar 

  24. Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender J-L, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513. https://doi.org/10.1074/jbc.M109.061432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balcke GU, Handrick V, Bergau N, Fichtner M, Henning A, Stellmach H, Tissier A, Hause B, Frolov A (2012) An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Methods 8(1):47. https://doi.org/10.1186/1746-4811-8-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are very grateful to Tim Iven for improving the phytohormone analysis platform and Krzysztof Zienkiewicz for testing the robustness of the method. We thank Sabine Freitag and Pia Meyer for excellent assistance. This research has been funded by the DFG (ZUK 45/2010; INST 186/822-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Feussner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Herrfurth, C., Feussner, I. (2020). Quantitative Jasmonate Profiling Using a High-Throughput UPLC-NanoESI-MS/MS Method. In: Champion, A., Laplaze, L. (eds) Jasmonate in Plant Biology. Methods in Molecular Biology, vol 2085. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0142-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0142-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0141-9

  • Online ISBN: 978-1-0716-0142-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics