Skip to main content

Mitochondrial Genome Evolution in the Plant Lineage

  • Chapter
  • First Online:
Plant Mitochondria

Part of the book series: Advances in Plant Biology ((AIPB,volume 1))

Abstract

Land plants feature particularly complicated mitochondrial genomes. Plant mitochondrial DNAs may be more than 100 times larger than those of animals and are structurally much more complex due to frequent ongoing recombination. The significant increase of plant mitochondrial genome sizes results from a combination of several factors: more genes are encoded, many of these carry introns and, most importantly, the plant mitochondrial genome has a propensity to accept foreign DNA sequences from the chloroplast, the nucleus, or even from other mitochondrial genomes via horizontal gene transfer. Similarly, plant mitochondria are also more complex on the transcriptome level where processes such as frequent RNA editing or trans-splicing of disrupted introns contribute to RNA maturation. The evolution of these peculiar features is discussed in the framework of our modern understanding of plant phylogeny to which mitochondrial genome data have contributed significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Intron nomenclature consists of gene name followed by the letter i, the number of the nucleotide in the mature reading frame preceding the insertion site and a qualifier designating groupI/II introns as g1/2. See Box 1.1 for details.

Abbreviations

CMS:

Cytoplasmic male sterility

EGT:

Endosymbiotic gene transfer

HGT:

Horizontal gene transfer

LGT:

Lateral gene transfer

References

  • Adams, K. L., Palmer, J. D. 2003. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol. Phylogenet. Evol. 29:380–395.

    Article  PubMed  CAS  Google Scholar 

  • Adams, K. L., Clements, M. J., Vaughn, J. C. 1998. The Peperomia mitochondrial coxI group I intron: timing of horizontal transfer and subsequent evolution of the intron. J. Mol. Evol. 46:689–696.

    Article  PubMed  CAS  Google Scholar 

  • Adams, K. L., Song, K. M., Roessler, P. G., Nugent, J. M., Doyle, J. L., Doyle, J. J., Palmer, J. D. 1999. Intracellular gene transfer in action: Dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc. Natl. Acad. Sci. U.S.A. 96:13863–13868.

    Article  PubMed  CAS  Google Scholar 

  • Adams, K. L., Daley, D. O., Qiu, Y. L., Whelan, J., Palmer, J. D. 2000. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354–357.

    Article  PubMed  CAS  Google Scholar 

  • Adams, K. L., Ong, H. C., Palmer, J. D. 2001a. Mitochondrial gene transfer in pieces: Fission of the ribosomal protein gene rpl2 and partial or complete gene transfer to the nucleus. Mol. Biol. Evol. 18:2289–2297.

    Article  PubMed  CAS  Google Scholar 

  • Adams, K. L., Rosenblueth, M., Qiu, Y. L., Palmer, J. D. 2001b. Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution. Genetics 158:1289–1300.

    PubMed  CAS  Google Scholar 

  • Adams, K. L., Daley, D. O., Whelan, J., Palmer, J. D. 2002a. Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. Plant Cell 14:931–943.

    Article  PubMed  CAS  Google Scholar 

  • Adams, K. L., Qiu, Y. L., Stoutemyer, M., Palmer, J. D. 2002b. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc. Natl. Acad. Sci. U.S.A. 99:9905–9912.

    Article  PubMed  CAS  Google Scholar 

  • Allen, J. O., Fauron, C. M., Minx, P., Roark, L., Oddiraju, S., Lin, G. N., Meyer, L., Sun, H., Kim, K., Wang, C., Du, F., Xu, D., Gibson, M., Cifrese, J., Clifton, S. W., Newton, K. J. 2007. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192.

    Article  PubMed  CAS  Google Scholar 

  • Alverson, A. J., Wei, X., Rice, D. W., Stern, D. B., Barry, K., Palmer, J. D. 2010. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol. Biol. Evol. 27:1436–1448.

    Google Scholar 

  • Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., Young, I. G. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–465.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, J. O. 2005. Lateral gene transfer in eukaryotes. Cell. Mol. Life Sci. 62:1182–1197.

    Article  PubMed  CAS  Google Scholar 

  • Andre, C., Levy, A., Walbot, V. 1992. Small repeated sequences and the structure of plant mitochondrial genomes. Trends Genet. 8:128–132.

    PubMed  CAS  Google Scholar 

  • Asakura, Y., Barkan, A. 2006. Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. Plant Physiol. 142:1656–1663.

    Article  PubMed  CAS  Google Scholar 

  • Asakura, Y., Barkan, A. 2007. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. Plant Cell 19:3864–3875.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, F. T., Culham, A., Pankhurst, C. E., Gibby, M. 2000. Mitochondrial and chloroplast DNA-based phylogeny of Pelargonium (Geraniaceae). Am. J. Bot. 87:727–734.

    Article  PubMed  CAS  Google Scholar 

  • Beagley, C. T., Okada, N. A., Wolstenholme, D. R. 1996. Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: one intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 93:5619–5623.

    Article  PubMed  CAS  Google Scholar 

  • Beckert, S., Steinhauser, S., Muhle, H., Knoop, V. 1999. A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrial nad5 gene. Plant Syst. Evol. 218:179–192.

    Article  CAS  Google Scholar 

  • Beckert, S., Muhle, H., Pruchner, D., Knoop, V. 2001. The mitochondrial nad2 gene as a novel marker locus for phylogenetic analysis of early land plants: a comparative analysis in mosses. Mol. Phylogenet. Evol. 18:117–126.

    Article  PubMed  CAS  Google Scholar 

  • Bégu, D., Araya, A. 2009. The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs. Curr. Genet. 55:69–79.

    Article  PubMed  CAS  Google Scholar 

  • Bendich, A. J. 2007. The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts. Bioessays 29:474–483.

    Article  PubMed  CAS  Google Scholar 

  • Benne, R., Van Den Burg J., Brakenhoff, J. P., Sloof, P., Van Boom, J. H., Tromp, M. C. 1986. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826.

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson, U., Adams, K. L., Thomason, B., Palmer, J. D. 2003. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201.

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson, U., Richardson, A. O., Young, G. J., Goertzen, L. R., Palmer, J. D. 2004. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc. Natl. Acad. Sci. U.S.A. 101:17747–17752.

    Article  PubMed  CAS  Google Scholar 

  • Binder, S., Marchfelder, A., Brennicke, A., Wissinger, B. 1992. RNA editing in trans-splicing intron sequences of nad2 mRNAs in Oenothera mitochondria. J. Biol. Chem. 267:7615–7623.

    PubMed  CAS  Google Scholar 

  • Bock, R. 2010. The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci. 15:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Boesch, P., Ibrahim, N., Paulus, F., Cosset, A., Tarasenko, V., Dietrich, A. 2009. Plant mitochondria possess a short-patch base excision DNA repair pathway. Nucl. Acids Res. 37:5690–5700.

    Article  PubMed  CAS  Google Scholar 

  • Bonen, L. 2008. Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34.

    Article  PubMed  CAS  Google Scholar 

  • Brennicke, A., Grohmann, L., Hiesel, R., Knoop, V., Schuster, W. 1993. The mitochondrial genome on its way to the nucleus: different stages of gene transfer in higher plants. FEBS Lett. 325:140–145.

    Article  PubMed  CAS  Google Scholar 

  • Burger, G., Forget, L., Zhu, Y., Gray, M. W., Lang, B. F. 2003. Unique mitochondrial genome architecture in unicellular relatives of animals. Proc. Natl. Acad. Sci. U.S.A. 100:892–897.

    Article  PubMed  CAS  Google Scholar 

  • Burger, G., Yan, Y., Javadi, P., Lang, B. F. 2009. Group I-intron trans-splicing and mRNA editing in the mitochondria of placozoan animals. Trends Genet. 25:381–386.

    Article  PubMed  CAS  Google Scholar 

  • Cech, T. R., Damberger, S. H., Gutell, R. R. 1994. Representation of the secondary and tertiary structure of group I introns. Nat. Struct. Biol 1:273–280.

    Article  PubMed  CAS  Google Scholar 

  • Chapdelaine, Y., Bonen, L. 1991. The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces. Cell 65:465–472.

    Article  PubMed  CAS  Google Scholar 

  • Chaw, S. M., Chun-Chieh, S. A., Wang, D., Wu, Y. W., Liu, S. M., Chou, T. Y. 2008. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol. Biol. Evol. 25:603–615.

    Article  PubMed  CAS  Google Scholar 

  • Cho, Y., Qiu, Y. L., Kuhlman, P., Palmer, J. D. 1998. Explosive invasion of plant mitochondria by a group I intron. Proc. Natl. Acad. Sci. U.S.A. 95:14244–14249.

    Article  PubMed  CAS  Google Scholar 

  • Cho, Y., Mower, J. P., Qiu, Y. L., Palmer, J. D. 2004. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc. Natl. Acad. Sci. U.S.A. 101:17741–17746.

    Article  PubMed  CAS  Google Scholar 

  • Clifton, S. W., Minx, P., Fauron, C. M., Gibson, M., Allen, J. O., Sun, H., Thompson, M., Barbazuk, W. B., Kanuganti, S., Tayloe, C., Meyer, L., Wilson, R. K., Newton, K. J. 2004. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 136:3486–3503.

    Article  PubMed  CAS  Google Scholar 

  • Covello, P. S., Gray, M. W. 1989. RNA editing in plant mitochondria. Nature 341:662–666.

    Article  PubMed  CAS  Google Scholar 

  • Covello, P. S., Gray, M. W. 1992. Silent mitochondrial and active nuclear genes for subunit 2 of cytochrome c oxidase (cox2) in soybean: evidence for RNA-mediated gene transfer. EMBO J. 11:3815–3820.

    PubMed  CAS  Google Scholar 

  • Cusimano, N., Zhang, L. B., Renner, S. S. 2008. Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer. Mol. Biol. Evol. 25:265–276.

    Article  PubMed  CAS  Google Scholar 

  • Davis, C. C., Wurdack, K. J. 2004. Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678.

    Article  PubMed  CAS  Google Scholar 

  • Davis, C. C., Anderson, W. R., Wurdack, K. J. 2005. Gene transfer from a parasitic flowering plant to a fern. Proc. Biol. Sci. 272:2237–2242.

    Article  PubMed  CAS  Google Scholar 

  • Delannoy, E., Le Ret, M., Faivre-Nitschke, E., Estavillo, G. M., Bergdoll, M., Taylor, N. L., Pogson, B. J., Small, I., Imbault, P., Gualberto, J. M. 2009. Arabidopsis tRNA adenosine deaminase arginine edits the wobble nucleotide of chloroplast tRNAArg(ACG) and is essential for efficient chloroplast translation. Plant Cell 21:2058–2071.

    Article  PubMed  CAS  Google Scholar 

  • Dombrovska, E., Qiu, Y. L. 2004. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol. Phylogenet. Evol. 32:246–263.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J. 1982. Promiscuous DNA–chloroplast genes inside plant mitochondria. Nature 299:678–679.

    Article  PubMed  CAS  Google Scholar 

  • Freyer, R., Kiefer-Meyer, M.-C., Kössel, H. 1997. Occurrence of plastid RNA editing in all major lineages of land plants. Proc. Natl. Acad. Sci. U.S.A. 94:6285–6290.

    Article  PubMed  CAS  Google Scholar 

  • Fukami, H., Chen, C. A., Chiou, C. Y., Knowlton, N. 2007. Novel group I introns encoding a putative homing endonuclease in the mitochondrial cox1 gene of Scleractinian corals. J. Mol. Evol. 64:591–600.

    Article  PubMed  CAS  Google Scholar 

  • Gawryluk, R. M., Gray, M. W. 2009. A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa. BMC Res. Notes 2:16.

    Article  PubMed  CAS  Google Scholar 

  • Gawryluk, R. M., Gray, M. W. 2010. An ancient fission of mitochondrial cox1. Mol. Biol. Evol. 27:7–10.

    Article  PubMed  CAS  Google Scholar 

  • Gissi, C., Iannelli, F., Pesole, G. 2008. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301–320.

    Article  PubMed  CAS  Google Scholar 

  • Glanz, S., Kück, U. 2009. Trans-splicing of organelle introns – a detour to continuous RNAs. Bioessays 31:921–934.

    Article  PubMed  CAS  Google Scholar 

  • Goremykin, V. V., Salamini, F., Velasco, R., Viola, R. 2009. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol. Biol. Evol. 26:99–110.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M. W., Lang, B. F., Burger, G. 2004. Mitochondria of protists. Annu. Rev. Genet. 38:477–524.

    Article  PubMed  CAS  Google Scholar 

  • Grewe, F., Viehoever, P., Weisshaar, B., Knoop, V. 2009. A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucl. Acids Res. 37:5093–5104.

    Article  PubMed  CAS  Google Scholar 

  • Groth-Malonek, M., Pruchner, D., Grewe, F., Knoop, V. 2005. Ancestors of trans-splicing ­mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Mol. Biol. Evol. 22:117–125.

    Article  PubMed  CAS  Google Scholar 

  • Groth-Malonek, M., Rein, T., Wilson, R., Groth, H., Heinrichs, J., Knoop, V. 2007a. Different fates of two mitochondrial gene spacers in early land plant evolution. Int. J. Plant Sci. 168:709–717.

    Article  CAS  Google Scholar 

  • Groth-Malonek, M., Wahrmund, U., Polsakiewicz, M., Knoop, V. 2007b. Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Mol. Biol. Evol. 24:1068–1074.

    Article  PubMed  CAS  Google Scholar 

  • Gualberto, J. M., Lamattina, L., Bonnard, G., Weil, J. H., Grienenberger, J. M. 1989. RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341:660–662.

    Article  PubMed  CAS  Google Scholar 

  • Handa, H. 2003. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucl. Acids Res. 31:5907–5916.

    Article  PubMed  CAS  Google Scholar 

  • Haugen, P., Simon, D. M., Bhattacharya, D. 2005. The natural history of group I introns. Trends Genet. 21:111–119.

    Article  PubMed  CAS  Google Scholar 

  • Hennig, W. 1950. Grundzüge einer Theorie der Phylogenetischen Systematik. Berlin: Deutscher Zentralverlag.

    Google Scholar 

  • Hiesel, R., Wissinger, B., Schuster, W., Brennicke, A. 1989. RNA editing in plant mitochondria. Science 246:1632–1634.

    Article  PubMed  CAS  Google Scholar 

  • Hiesel, R., von Haeseler, A., Brennicke, A. 1994. Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. Proc. Natl. Acad. Sci. U.S.A. 91:634–638.

    Article  PubMed  CAS  Google Scholar 

  • Hoch, B., Maier, R. M., Appel, K., Igloi, G. L., Kössel, H. 1991. Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353:178–180.

    Article  PubMed  CAS  Google Scholar 

  • Karcher, D., Bock, R. 2009. Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme. RNA 15:1251–1257.

    Article  PubMed  CAS  Google Scholar 

  • Keeling, P. J., Palmer, J. D. 2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9:605–618.

    Article  PubMed  CAS  Google Scholar 

  • Keren, I., Bezawork-Geleta, A., Kolton, M., Maayan, I., Belausov, E., Levy, M., Mett, A., Gidoni, D., Shaya, F., Ostersetzer-Biran, O. 2009. AtnMat2, a nuclear-encoded maturase required for splicing of group-II introns in Arabidopsis mitochondria. RNA 15:2299–2311.

    Article  PubMed  CAS  Google Scholar 

  • Knoop, V. 2004. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr. Genet. 46:123–139.

    Article  PubMed  CAS  Google Scholar 

  • Knoop, V. 2010. Looking for sense in the nonsense: a short review of non-coding organellar DNA elucidating the phylogeny of bryophytes. Trop. Bryol. 31:50–60.

    Google Scholar 

  • Knoop, V., Brennicke, A. 1991. A mitochondrial intron sequence in the 5′-flanking region of a plant nuclear lectin gene. Curr. Genet. 20:423–425.

    Article  PubMed  CAS  Google Scholar 

  • Knoop, V., Brennicke, A. 1999. RNA-editing 1999. Biol. i. uns. Zeit 29:336–345.

    Article  CAS  Google Scholar 

  • Knoop, V., Schuster, W., Wissinger, B., Brennicke, A. 1991. Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria. EMBO J. 10:3483–3493.

    PubMed  CAS  Google Scholar 

  • Knoop, V., Ehrhardt, T., Lättig, K., Brennicke, A. 1995. The gene for ribosomal protein S10 is present in mitochondria of pea and potato but absent from those of Arabidopsis and Oenothera. Curr. Genet. 27:559–564.

    Article  PubMed  CAS  Google Scholar 

  • Knoop, V., Unseld, M., Marienfeld, J., Brandt, P., Sünkel, S., Ullrich, H., Brennicke, A. 1996. copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142:579–585.

    PubMed  CAS  Google Scholar 

  • Kobayashi, Y., Knoop, V., Fukuzawa, H., Brennicke, A., Ohyama, K. 1997. Interorganellar gene transfer in bryophytes: the functional nad7 gene is nuclear encoded in Marchantia polymorpha. Mol. Gen. Genet. 256:589–592.

    PubMed  CAS  Google Scholar 

  • Kotera, E., Tasaka, M., Shikanai, T. 2005. A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330.

    Article  PubMed  CAS  Google Scholar 

  • Koulintchenko, M., Konstantinov, Y., Dietrich, A. 2003. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J. 22:1245–1254.

    Article  PubMed  CAS  Google Scholar 

  • Kroeger, T. S., Watkins, K. P., Friso, G., van Wijk, K. J., Barkan, A. 2009. A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Proc. Natl. Acad. Sci. U.S.A. 106:4537–4542.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, N., Arimura, S. 2010. Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms. DNA Res. 17:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Mikami, T. 2007. Organization and variation of angiosperm mitochondrial genome. Physiol. Plant. 129:6–13.

    Article  CAS  Google Scholar 

  • Kubo, T., Newton, K. J. 2008. Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Nishizawa, S., Sugawara, A., Itchoda, N., Estiati, A., Mikami, T. 2000. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucl. Acids Res. 28:2571–2576.

    Article  PubMed  CAS  Google Scholar 

  • Kugita, M., Yamamoto, Y., Fujikawa, T., Matsumoto, T., Yoshinaga, K. 2003. RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucl. Acids Res. 31:2417–2423.

    Article  PubMed  CAS  Google Scholar 

  • Lang, B. F., Burger, G., O’Kelly, C. J., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., Gray, M. W. 1997. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497.

    Article  PubMed  CAS  Google Scholar 

  • Lavrov, D. V. 2007. Key transitions in animal evolution: a mitochondrial DNA perspective. Integr. Compar. Biol. 47:734–743.

    Article  CAS  Google Scholar 

  • Lawrence, J. G., Hendrickson, H. 2003. Lateral gene transfer: when will adolescence end? Mol. Microbiol. 50:739–749.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, H., Rüdinger, M., Volkmar, U., Fischer, S., Herres, S., Grewe, F., Knoop, V. 2009. Introducing the plant RNA editing prediction and analysis computer tool PREPACT and an update on RNA editing site nomenclature. Curr. Genet. 56:189–201.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Wang, B., Liu, Y., Qiu, Y. L. 2009. The complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J. Mol. Evol. 68:665–678.

    Article  PubMed  CAS  Google Scholar 

  • Lilly, J. W., Havey, M. J. 2001. Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics 159:317–328.

    PubMed  CAS  Google Scholar 

  • Lin, X., Kaul, S., Rounsley, S., Shea, T. P., Benito, M. I., Town, C. D., Fujii, C. Y., Mason, T., Bowman, C. L., Barnstead, M., Feldblyum, T. V., Buell, C. R., Ketchum, K. A., Lee, J., Ronning, C. M., Koo, H. L., Moffat, K. S., Cronin, L. A., Shen, M., Pai, G., Van Aken, S., Umayam, L., Tallon, L. J., Gill, J. E., Adams, M. D., Carrera, A. J., Creasy, T. H., Goodman, H. M., Somerville, C. R., Copenhaver, G. P., Preuss, D., Nierman, W. C., White, O., Eisen, J. A., Salzberg, S. L., Fraser, C. M., Venter, J. C. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. L., Zhuang, Y., Zhang, P., Adams, K. L. 2009. Comparative analysis of structural diversity and sequence evolution in plant mitochondrial genes transferred to the nucleus. Mol. Biol. Evol. 26:875–891.

    Article  PubMed  CAS  Google Scholar 

  • Logan, D. C. 2010. The dynamic plant chondriome. Semin. Cell Dev. Biol. 21(6):550–557.

    Google Scholar 

  • Lonergan, K. M., Gray, M. W. 1993. Editing of transfer RNAs in Acanthamoeba castellanii ­mitochondria. Science 259:812–816.

    Article  PubMed  CAS  Google Scholar 

  • Lurin, C., Andrés, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyère, C., Caboche, M., Debast, C., Gualberto, J., Hoffmann, B., Lecharny, A., Le Ret, M., Martin-Magniette, M. L., Mireau, H., Peeters, N., Renou, J. P., Szurek, B., Taconnat, L., Small, I. 2004. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103.

    Article  PubMed  CAS  Google Scholar 

  • Malek, O., Knoop, V. 1998. Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. RNA 4:1599–1609.

    Article  PubMed  CAS  Google Scholar 

  • Malek, O., Lättig, K., Hiesel, R., Brennicke, A., Knoop, V. 1996. RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J. 15:1403–1411.

    PubMed  CAS  Google Scholar 

  • Malek, O., Brennicke, A., Knoop, V. 1997. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times. Proc. Natl. Acad. Sci. U.S.A. 94:553–558.

    Article  PubMed  CAS  Google Scholar 

  • Manchekar, M., Scissum-Gunn, K., Song, D., Khazi, F., McLean, S. L., Nielsen, B. L. 2006. DNA recombination activity in soybean mitochondria. J. Mol. Biol. 356:288–299.

    Article  PubMed  CAS  Google Scholar 

  • Marande, W., Burger, G. 2007. Mitochondrial DNA as a genomic jigsaw puzzle. Science 318:415.

    Article  PubMed  CAS  Google Scholar 

  • Mower, J. P., Bonen, L. 2009. Ribosomal protein L10 is encoded in the mitochondrial genome of many land plants and green algae. BMC Evol. Biol. 9:265.

    Article  PubMed  CAS  Google Scholar 

  • Mower, J. P., Palmer, J. D. 2006. Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris. Mol. Genet. Genomics 276:285–293.

    Article  PubMed  CAS  Google Scholar 

  • Mower, J. P., Stefanovic, S., Young, G. J., Palmer, J. D. 2004. Plant genetics: gene transfer from parasitic to host plants. Nature 432:165–166.

    Article  PubMed  CAS  Google Scholar 

  • Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A., Kadowaki, K. 2002. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics 268:434–445.

    Article  PubMed  CAS  Google Scholar 

  • Nugent, J. M., Palmer, J. D. 1991. RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481.

    Article  PubMed  CAS  Google Scholar 

  • Oda, K., Kohchi, T., Ohyama, K. 1992. Mitochondrial DNA of Marchantia polymorpha as a single circular form with no incorporation of foreign DNA. Biosci. Biotechnol. Biochem. 56:132–135.

    Article  PubMed  CAS  Google Scholar 

  • Oda, K., Yamato, K., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K., Kanegae, T., Ogura, Y., Kohchi, T., Ohyama, K. 1992. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J. Mol. Biol. 223:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Odahara, M., Kuroiwa, H., Kuroiwa, T., Sekine, Y. 2009. Suppression of repeat-mediated gross mitochondrial genome rearrangements by RecA in the moss Physcomitrella patens. Plant Cell 21:1182–1194.

    Article  PubMed  CAS  Google Scholar 

  • Ogihara, Y., Yamazaki, Y., Murai, K., Kanno, A., Terachi, T., Shiina, T., Miyashita, N., Nasuda, S., Nakamura, C., Mori, N., Takumi, S., Murata, M., Futo, S., Tsunewaki, K. 2005. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucl. Acids Res. 33:6235–6250.

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg, D. J., Bendich, A. J. 2001. Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J. Mol. Biol. 310:549–562.

    Article  PubMed  CAS  Google Scholar 

  • Ong, H. C., Palmer, J. D. 2006. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus. BMC Evol. Biol. 6:55.

    Article  PubMed  CAS  Google Scholar 

  • Ostheimer, G. J., Rojas, M., Hadjivassiliou, H., Barkan, A. 2006. Formation of the CRS2-CAF2 group II intron splicing complex is mediated by a 22-amino acid motif in the COOH-terminal region of CAF2. J. Biol. Chem. 281:4732–4738.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. D., Herbon, L. A. 1987. Unicircular structure of the Brassica hirta mitochondrial genome. Curr. Genet. 11:565–570.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. D., Herbon, L. A. 1988. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 28:87–97.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. D., Shields, C. R. 1984. Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307:437–440.

    Article  CAS  Google Scholar 

  • Palmer, J. D., Soltis, D., Soltis, P. 1992. Large size and complex structure of mitochondrial DNA in two nonflowering land plants. Curr. Genet. 21:125–129.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. D., Adams, K. L., Cho, Y., Parkinson, C. L., Qiu, Y. L., Song, K. 2000. Dynamic evolution of plant mitochondrial genomes: Mobile genes and introns and highly variable mutation rates. Proc. Natl. Acad. Sci. U.S.A. 97:6960–6966.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, C. L., Mower, J. P., Qiu, Y. L., Shirk, A. J., Song, K., Young, N. D., dePamphilis, C. W., Palmer, J. D. 2005. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol. Biol. 5:73.

    Article  PubMed  CAS  Google Scholar 

  • Pereira de Souza, A., Jubier, M.-F., Delcher, E., Lancelin, D., Lejeune, B. 1991. A trans-splicing model for the expression of the tripartite nad5 gene in wheat and maize mitochondria. Plant Cell 3:1363–1378.

    PubMed  CAS  Google Scholar 

  • Perez-Martinez, X., Antaramian, A., Vazquez-Acevedo, M., Funes, S., Tolkunova, E., d’Alayer, J., Claros, M. G., Davidson, E., King, M. P., Gonzalez-Halphen, D. 2001. Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J. Biol. Chem. 276:11302–11309.

    Article  PubMed  CAS  Google Scholar 

  • Pruchner, D., Nassal, B., Schindler, M., Knoop, V. 2001. Mosses share mitochondrial group II introns with flowering plants, not with liverworts. Mol. Genet. Genomics 266:608–613.

    Article  PubMed  CAS  Google Scholar 

  • Pruchner, D., Beckert, S., Muhle, H., Knoop, V. 2002. Divergent intron conservation in the mitochondrial nad2 gene: signatures for the three bryophyte classes (mosses, liverworts, and hornworts) and the lycophytes. J. Mol. Evol. 55:265–271.

    Article  PubMed  CAS  Google Scholar 

  • Pryer, K. M., Schneider, H., Smith, A. R., Cranfill, R., Wolf, P. G., Hunt, J. S., Sipes, S. D. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622.

    Article  PubMed  CAS  Google Scholar 

  • Pyle, A. M., Fedorova, O., Waldsich, C. 2007. Folding of group II introns: a model system for large, multidomain RNAs? Trends Biochem. Sci. 32:138–145.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Y. L., Palmer, J. D. 2004. Many independent origins of trans splicing of a plant mitochondrial group II intron. J. Mol. Evol. 59:80–89.

    PubMed  CAS  Google Scholar 

  • Qiu, Y. L., Cho, Y. R., Cox, J. C., Palmer, J. D. 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394:671–674.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Y. L., Li, L., Wang, B., Chen, Z., Knoop, V., Groth-Malonek, M., Dombrovska, O., Lee, J., Kent, L., Rest, J., Estabrook, G. F., Hendry, T. A., Taylor, D. W., Testa, C. M., Ambros, M., Crandall-Stotler, B., Duff, R. J., Stech, M., Frey, W., Quandt, D., Davis, C. C. 2006. The deepest divergences in land plants inferred from phylogenomic evidence. Proc. Natl. Acad. Sci. U.S.A. 103:15511–15516.

    Article  PubMed  CAS  Google Scholar 

  • Ran, J. H., Gao, H., Wang, X. Q. 2010. Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms. Mol. Phylogenet. Evol. 54:136–149.

    Article  PubMed  CAS  Google Scholar 

  • Rice, D. W., Palmer, J. D. 2006. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol. 4:31.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, A. O., Palmer, J. D. 2006. Horizontal gene transfer in plants. J. Exp. Bot. 58:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Robbens, S., Derelle, E., Ferraz, C., Wuyts, J., Moreau, H., van de Peer, Y. 2007. The complete chloroplast and mitochondrial DNA Sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction. Mol. Biol. Evol. 24:956–968.

    Article  PubMed  CAS  Google Scholar 

  • Rüdinger, M., Polsakiewicz, M., Knoop, V. 2008. Organellar RNA editing and plant-specific extensions of pentatricopeptide repeat (PPR) proteins in jungermanniid but not in marchantiid liverworts. Mol. Biol. Evol. 25:1405–1414.

    Article  PubMed  CAS  Google Scholar 

  • Rüdinger, M., Funk, H. T., Rensing, S. A., Maier, U. G., Knoop, V. 2009. RNA editing: 11 sites only in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol. Genet. Genomics 281:473–481.

    Article  PubMed  CAS  Google Scholar 

  • Salone, V., Rüdinger, M., Polsakiewicz, M., Hoffmann, B., Groth-Malonek, M., Szurek, B., Small, I., Knoop, V., Lurin, C. 2007. A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett. 581:4132–4138.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, H., Fester, T., Kloska, S., Schroder, W., Schuster, W. 1996. Transfer of rps19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J. 15:2138–2149.

    PubMed  CAS  Google Scholar 

  • Sanchez-Puerta, M. V., Cho, Y., Mower, J. P., Alverson, A. J., Palmer, J. D. 2008. Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria. Mol. Biol. Evol. 25:1762–1777.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, M., Kubo, T., Nishizawa, S., Estiati, A., Itchoda, N., Mikami, T. 2004. The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol. Genet. Genomics 272:247–256.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber, C., Williams-Carrier, R. E., Williams-Voelker, P. M., Kroeger, T. S., Vichas, A., Barkan, A. 2006. A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, W., Brennicke, A. 1987. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA? EMBO J. 6:2857–2863.

    PubMed  CAS  Google Scholar 

  • Sethuraman, J., Majer, A., Friedrich, N. C., Edgell, D. R., Hausner, G. 2009. Genes within genes: multiple LAGLIDADG homing endonucleases target the ribosomal protein S3 gene encoded within an rnl group I intron of Ophiostoma and related taxa. Mol. Biol. Evol. 26:2299–2315.

    Article  PubMed  CAS  Google Scholar 

  • Shedge, V., Arrieta-Montiel, M., Christensen, A. C., Mackenzie, S. A. 2007. Plant mitochondrial ­recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264.

    Article  PubMed  CAS  Google Scholar 

  • Sloan, D. B., Oxelman, B., Rautenberg, A., Taylor, D. R. 2009. Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC Evol. Biol. 9:260.

    Article  PubMed  CAS  Google Scholar 

  • Steinhauser, S., Beckert, S., Capesius, I., Malek, O., Knoop, V. 1999. Plant mitochondrial RNA editing: extreme in hornworts and dividing the liverworts? J. Mol. Evol. 48:303–312.

    Article  PubMed  CAS  Google Scholar 

  • Stern, D. B., Lonsdale, D. M. 1982. Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299:698–702.

    Article  PubMed  CAS  Google Scholar 

  • Stupar, R. M., Lilly, J. W., Town, C. D., Cheng, Z., Kaul, S., Buell, C. R., Jiang, J. 2001. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc. Natl. Acad. Sci. U.S.A. 98:5099–5103.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, Y., Watase, Y., Nagase, M., Makita, N., Yagura, S., Hirai, A., Sugiura, M. 2005. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol. Genet. Genomics 272:603–615.

    Article  PubMed  CAS  Google Scholar 

  • Terasawa, K., Odahara, M., Kabeya, Y., Kikugawa, T., Sekine, Y., Fujiwara, M., Sato, N. 2006. The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol. Biol. Evol. 24:699–709.

    Article  PubMed  CAS  Google Scholar 

  • Timmis, J. N., Ayliffe, M. A., Huang, C. Y., Martin, W. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5:123–U16.

    Article  PubMed  CAS  Google Scholar 

  • Tourasse, N. J., Kolstø, A. B. 2008. Survey of group I and group II introns in 29 sequenced genomes of the Bacillus cereus group: insights into their spread and evolution. Nucl. Acids Res. 36:4529–4548.

    Article  PubMed  CAS  Google Scholar 

  • Turmel, M., Otis, C., Lemieux, C. 2002a. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc. Natl. Acad. Sci. U.S.A. 99:11275–11280.

    Article  PubMed  CAS  Google Scholar 

  • Turmel, M., Otis, C., Lemieux, C. 2002b. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol. Biol. Evol. 19:24–38.

    Article  PubMed  CAS  Google Scholar 

  • Turmel, M., Otis, C., Lemieux, C. 2003. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903.

    Article  PubMed  CAS  Google Scholar 

  • Turmel, M., Otis, C., Lemieux, C. 2007. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus. BMC Genomics 8:137.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, M., Nishikawa, T., Fujimoto, M., Takanashi, H., Arimura, S., Tsutsumi, N., Kadowaki, K. 2008. Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol. Biol. Evol. 25:1566–1575.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, H., Lättig, K., Brennicke, A., Knoop, V. 1997. Mitochondrial DNA variations and nuclear RFLPs reflect different genetic similarities among 23 Arabidopsis thaliana ecotypes. Plant Mol. Biol. 33:37–45.

    Article  PubMed  CAS  Google Scholar 

  • Unseld, M., Marienfeld, J. R., Brandt, P., Brennicke, A. 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat. Genet. 15:57–61.

    Article  PubMed  CAS  Google Scholar 

  • Vangerow, S., Teerkorn, T., Knoop, V. 1999. Phylogenetic information in the mitochondrial nad5 gene of pteridophytes: RNA editing and intron sequences. Plant Biol. 1:235–243.

    Article  CAS  Google Scholar 

  • Vaughn, J. C., Mason, M. T., Sper-Whitis, G. L., Kuhlman, P., Palmer, J. D. 1995. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia. J. Mol. Evol. 41:563–572.

    Article  PubMed  CAS  Google Scholar 

  • Volkmar, U., Knoop, V. 2010. Introducing intron locus cox1i624 for phylogenetic analyses in bryophytes: on the issue of Takakia as sister genus to all other extant mosses. J. Mol. Evol. 70(5):506–518.

    Article  PubMed  CAS  Google Scholar 

  • Wahrmund, U., Rein, T., Müller, K. F., Groth-Malonek, M., Knoop, V. 2009. Fifty mosses on five trees: comparing phylogenetic information in three types of non-coding mitochondrial DNA and two chloroplast loci. Plant Syst. Evol. 282:241–255.

    Article  Google Scholar 

  • Wahrmund, U., Quandt, D., Knoop, V. 2010. The phylogeny of mosses – addressing open issues with a new mitochondrial locus: group I intron cobi420. Mol. Phylogenet. Evol. 54:417–426.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Lavrov, D. V. 2007. Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. Mol. Biol. Evol. 24:363–373.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Wu, Y. W., Shih, A. C., Wu, C. S., Wang, Y. N., Chaw, S. M. 2007. Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol. Biol. Evol. 24:2040–2048.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B., Xue, J., Li, L., Liu, Y., Qiu, Y. L. 2009. The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts. Curr. Genet. 55:601–609.

    Article  PubMed  CAS  Google Scholar 

  • Ward, B. L., Anderson, R. S., Bendich, A. J. 1981. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, K. P., Kroeger, T. S., Cooke, A. M., Williams-Carrier, R. E., Friso, G., Belcher, S. E., van Wijk, K. J., Barkan, A. 2007. A ribonuclease III domain protein functions in group II intron splicing in maize chloroplasts. Plant Cell 19:2606–2623.

    Article  PubMed  CAS  Google Scholar 

  • Wikström, N., Pryer, K. M. 2005. Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails. Mol. Phylogenet. Evol. 36:484–493.

    Article  PubMed  CAS  Google Scholar 

  • Wischmann, C., Schuster, W. 1995. Transfer of rps10 from the mitochondrion to the nucleus in Arabidopsis thaliana: evidence for RNA-mediated transfer and exon shuffling at the integration site. FEBS Lett. 374:152–156.

    Article  PubMed  CAS  Google Scholar 

  • Wissinger, B., Schuster, W., Brennicke, A. 1991. Trans splicing in Oenothera mitochondria: nad1 mRNAs are edited in exon and trans-splicing group II intron sequences. Cell 65:473–482.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, P. G., Rowe, C. A., Hasebe, M. 2004. High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97.

    Article  PubMed  CAS  Google Scholar 

  • Woloszynska, M. 2010. Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes – though this be madness, yet there’s method in’t. J. Exp. Bot. 61:657–671.

    Article  PubMed  CAS  Google Scholar 

  • Won, H., Renner, S. S. 2003. Horizontal gene transfer from flowering plants to Gnetum. Proc. Natl. Acad. Sci. U.S.A. 100:10824–10829.

    Article  PubMed  CAS  Google Scholar 

  • Xue, J. Y., Liu, Y., Li, L., Wang, B., Qiu, Y. L. 2010. The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Curr. Genet. 56:53–61.

    Article  PubMed  CAS  Google Scholar 

  • Zehrmann, A., Verbitskiy, D., van der Merwe, J. A., Brennicke, A., Takenaka, M. 2009. A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell 21:558–567.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Knoop .

Editor information

Editors and Affiliations

Glossary

Chondrome:

Understood as the mitochondrial genome (similar to the term “plastome” for the chloroplast genome). Sometimes mixed up with the term chondriome, now more widely used to circumscribe all mitochondria in a cell (see Chap. 2).

Clade:

See monophyletic.

Cytoplasmic male sterility (CMS):

The economically most important phenotypic trait connected to plant mitochondrial DNA mutations. The corresponding mitochondrial dysfunctions are revealed as male infertility resulting from nonfunctional pollen grains.

Endosymbiotic gene transfer (EGT):

The functional relocation of genes from the organelle endosymbiont genomes into the host cell nucleus as a corollary of the endosymbiont hypothesis. Functional gene transfer may proceed through mature RNA and reverse transcription. Clearly though, such functional gene transfer is accompanied by DNA-based copying mechanisms which lead to insertion of small and large DNA fragments of mitochondrial (numt) and plastid (nupt) origin in the nuclear genome.

Group I and group II introns:

Introns that are commonly observed in organelle genomes of plants and fungi, characterized by highly characteristic RNA secondary structures. For details see Box 1.1.

Heteroplasmy:

The existence of different organelle genomes within a single individual, a single cell or even a single organelle (given that organelle DNAs are generally present in multiple copies).

Horizontal gene transfer (HGT):

The process of DNA sequence migration across species borders. For details see Box 1.3.

Lateral gene transfer (LGT):

A term that is frequently used synonymously to >Horizontal gene transfer.

Monophyletic:

Literally, of “one stem,” a group of organisms (a clade) encompassing all descendants which trace back to a single (usually extinct) ancestor. Indentifying monophyletic clades through shared derived characters (>synapomorphies) is the goal of cladistics as introduced by Willi Hennig (1950) into modern phylogenetics.

Promiscuous DNA:

Mostly nonfunctional DNA fragments copied from one genome to another in the eukaryotic cell. Plant mitochondria are particularly prone to accumulation of DNA sequences from the chloroplast or the nuclear genome. Foreign DNA derived from the chloroplast or the nuclear genome is frequently inserted in to the mtDNA of vascular plants.

RNA editing:

Modification of nucleotide sequences on transcript level, in plant organelles in the form of cytidine-uridine exchanges. For details see Box 1.2.

Synapomorphy:

Any shared, derived (i.e., newly acquired) state of a morphologic, biochemical, developmental, or any other character in a group of organisms helping to identify them as a >monophyletic clade. Examples are the water-conducting tissues and the dominating diploid sporophyte generation for the vascular plant (tracheophyte) clade.

Trans-splicing:

The maturation of a RNA molecule through splicing of separate, independent precursor-transcripts encoded by separate, distant genomic loci. In plant organelles, gene arrangements requiring trans-splicing have arisen through recombinational activity disrupting ancestral group II or group I intron continuities.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Knoop, V., Volkmar, U., Hecht, J., Grewe, F. (2011). Mitochondrial Genome Evolution in the Plant Lineage. In: Kempken, F. (eds) Plant Mitochondria. Advances in Plant Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89781-3_1

Download citation

Publish with us

Policies and ethics