Skip to main content

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 24))

Abstract

Fast, accurate translation is a hallmark of protein synthesis. However, recoding systems subvert the normal decoding mechanisms to redefine codons or shift translation into alternate reading frames. Genetic analyses in yeast and bacteria have enhanced our understanding of non-standard decoding and of normal decoding processes. Recent crystallographic efforts have provided unprecedented insights into the mechanisms underlying translation and the selection of cognate tRNAs. Ribosomal components and factors involved in decoding have also been identified genetically, through selections for mutants that alter the fidelity of protein synthesis, or impact upon various recoding phenomena. The availability of high-resolution structures of ribosomal complexes together with advances in biochemistry now allow the effects of many of these mutant components to be explained in molecular terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MH, Rechenmacher A, Böck A (1980) Interaction between aminoglycoside uptake and ribosomal resistance mutations. Antimicrob Agents Chemother 18:798–806

    Article  PubMed  CAS  Google Scholar 

  • Ali IK, Lancaster L, Feinberg J, Joseph S, Noller HF (2006) Deletion of a conserved, central ribosomal intersubunit. RNA bridge Mol Cell 23:865–874

    Article  CAS  Google Scholar 

  • Arkov AL, Freistroffer DV, Ehrenberg M, Murgola EJ (1998) Mutations in RNAs of both ribosomal subunits cause defects in translation termination. EMBO J 17:1507–1514

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Zaporojets D, Squires C, Squires CL (1999) An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci USA 96:1971–1976

    Article  PubMed  CAS  Google Scholar 

  • Balasundaram D, Dinman JD, Tabor CW, Tabor H (1994a) Two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae. J Bacteriol 176:7126–7128

    Google Scholar 

  • Balasundaram D, Dinman JD, Wickner RB, Tabor CW, Tabor H (1994b) Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 91:172–176

    Google Scholar 

  • Baxter-Roshek JL, Petrov AN, Dinman JD (2007) Optimization of ribosome structure and function by rRNA base modification. PLoS ONE:e174

    Google Scholar 

  • Bidou L, Stahl G, Hatin I, Namy O, Rousset JP, Farabaugh PJ (2000) Nonsense-mediated decay mutants do not affect programmed −1 frameshifting. RNA 6:952–961

    Article  PubMed  CAS  Google Scholar 

  • Bilgin N, Ehrenberg M (1994). Mutations in 23 S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. J Mol Biol 235:813–824

    Article  PubMed  CAS  Google Scholar 

  • Bilgin N, Kirsebom LA, Ehrenberg M, Kurland CG (1988) Mutations in ribosomal proteins L7/L12 perturb EF-G and EF-Tu functions. Biochimie 70:611–618

    Article  PubMed  CAS  Google Scholar 

  • Björkman J, Samuelsson P, Andersson DI, Hughes D (1999) Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol Microbiol 31:53–58

    Article  PubMed  Google Scholar 

  • Blaha G, Nierhaus KH (2001) Features and functions of the ribosomal E site. Cold Spring Harb Symp Quant Biol 66:135–146

    Article  PubMed  CAS  Google Scholar 

  • Bollen A, Cabezón T, de Wilde M, Villarroel R, Herzog A (1975) Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. I. General properties of neaA mutants. J Mol Biol 99:795–806

    Article  PubMed  CAS  Google Scholar 

  • Bouakaz L, Bouakaz E, Murgola EJ, Ehrenberg M, Sanyal S (2006) The role of ribosomal protein L11 in class I release factor-mediated translation termination and translational accuracy. J Biol Chem 281:4548–4556

    Article  PubMed  CAS  Google Scholar 

  • Brunelle JL, Youngman EM, Sharma D, Green R (2006) The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12:33–39

    Article  PubMed  CAS  Google Scholar 

  • Burck CL, Chernoff YO, Liu R, Farabaugh PJ, Liebman SW (1999) Translational suppressors and antisuppressors alter the efficiency of the Ty1 programmed translational frameshift. RNA 5:1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO, Newnam GP, Liebman SW (1996) The translational function of nucleotide C1054 in the small subunit rRNA is conserved throughout evolution: genetic evidence in yeast. Proc Natl Acad Sci USA 93:2517–2522

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO, Vincent A, Liebman SW (1994). Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. EMBO J 13:906–913

    PubMed  CAS  Google Scholar 

  • Cui Y, Dinman JD, Kinzy TG, Peltz SW (1998a). The Mof2/Sui1 protein is a general monitor of translational accuracy. Mol Cell Biol 18:1506–1516

    Google Scholar 

  • Cui Y, Dinman JD, Peltz SW (1996) mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and −1 ribosomal frameshifting efficiency. EMBO J 15:5726–5736

    PubMed  CAS  Google Scholar 

  • Cui Y, Kinzy TG, Dinman JD, Peltz SW (1998b) Mutations in the MOF2/SUI1 gene affect both translation and nonsense-mediated mRNA decay. RNA 5:794–804

    Google Scholar 

  • Cukras AR, Green R. (2005) Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation. J Mol Biol 349:47–59.

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Gilbert W, Gorini L (1964) Streptomycin, suppression, the code. Proc Natl Acad Sci USA 51:883–890

    Article  PubMed  CAS  Google Scholar 

  • Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27:344–351

    Article  PubMed  CAS  Google Scholar 

  • Dinman JD (2009) The eukaryotic ribosome: current status and challenges. J biol Cgen 284:11761–11765

    Google Scholar 

  • Dinman JD, Kinzy TG (1997) Translational misreading: Mutations in translation elongation factor 1a differentially affect programmed ribosomal frameshifting and drug sensitivity. RNA 3:870–881

    PubMed  CAS  Google Scholar 

  • Dinman JD, Ruiz-Echevarria MJ, Czaplinski K, Peltz SW (1997) Peptidyl transferase inhibitors have antiviral properties by altering programmed −1 ribosomal frameshifting efficiencies: development of model systems. Proc Natl Acad Sci USA 94:6606–6611

    Article  PubMed  CAS  Google Scholar 

  • Dinman JD, Ruiz-Echevarria MJ, Peltz SW (1998) Translating old drugs into new treatments: Identifying compounds that modulate programmed −1 ribosomal frameshifting and function as potential antiviral agents. Trends Biotechnol 16:190–196

    Article  PubMed  CAS  Google Scholar 

  • Dinman JD, Wickner RB (1994) Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered −1 ribosomal frameshifting efficiencies. Genetics 136:75–86

    PubMed  CAS  Google Scholar 

  • Dinman JD, Wickner RB (1995) 5S rRNA is involved in fidelity of translational reading frame. Genetics 141:95–105

    PubMed  CAS  Google Scholar 

  • Ejby M, Sørensen MA, Pedersen S (2007) Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination Proc Natl Acad Sci USA 104:19410–19415

    Article  PubMed  CAS  Google Scholar 

  • Fan-Minogue H, Bedwell DM (2008) Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA 14:148–157

    Article  PubMed  CAS  Google Scholar 

  • Friesen, JD, Fiil NP, Parker JM, Haseltine WA (1974) A new relaxed mutant of Escherichia coli with an altered 50S ribosomal subunit. Proc Natl Acad Sci USA 71:3465–3469

    Article  PubMed  CAS  Google Scholar 

  • Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 8:181–188

    Article  PubMed  CAS  Google Scholar 

  • Gorini L (1971) Ribosomal discrimination of tRNAs. Nat New Biol 234:261–264

    PubMed  CAS  Google Scholar 

  • Gregory ST, Carr JF, Rodriguez-Correa D, Dahlberg AE (2005) Mutational analysis of 16S and 23S rRNA genes of Thermus thermophilus. J Bacteriol 187:4804–4812

    Article  PubMed  CAS  Google Scholar 

  • Gregory ST, Dahlberg AE (1995) Nonsense suppressor and antisuppressor mutations at the 1409–1491 base pair in the decoding region of Escherichia coli 16S rRNA. Nucl Acids Res 23:4234–4238

    Article  PubMed  CAS  Google Scholar 

  • Gregory ST, Dahlberg AE (1999) Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J Mol Biol 289:827–834

    Article  PubMed  CAS  Google Scholar 

  • Gregory ST, Lieberman KR, Dahlberg AE (1994) Mutations in the peptidyl transferase region of E. coli 23S rRNA affecting translational accuracy. Nucl Acids Res 22:279–284

    Article  PubMed  CAS  Google Scholar 

  • Gregory ST, Carr JF, Rodriguez-Correa D, Dahlberg AE (2005) Mutational analysis of 16S and 23S rRNA genes of Thermus thermophilus. J Bacteriol 187:4804–4812

    Article  PubMed  CAS  Google Scholar 

  • Harger JW, Dinman JD (2003) An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA 9:1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Harger JW, Dinman JD (2004) Evidence against a direct role for the Upf proteins in frameshfiting or nonsense codon readthrough. RNA 10:1721–1729

    Article  PubMed  CAS  Google Scholar 

  • Harger JW, Meskauskas A, Dinman JD (2002) An ‘integrated model’ of programmed ribosomal frameshifting and post-transcriptional surveillance. TIBS 27:448–454

    PubMed  CAS  Google Scholar 

  • Harger JW, Meskauskas A, Nielsen N, Justice MC, Dinman JD (2001) Ty1 retrotransposition and programmed +1 ribosomal frameshifting require the integrity of the protein synthetic translocation step. Virology 286:216–224

    Article  PubMed  CAS  Google Scholar 

  • Helgstrand M, Mandava CS, Mulder FA, Liljas A, Sanyal S, Akke M (2007) The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. J Mol Biol 365:468–479

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ, Nelson CC, Wills NM, Gesteland RF, Atkins JF (2001) Analysis of the roles of tRNA structure, ribosomal protein L9, the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. J Mol Biol 309:1029–1048

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi N, Sato NS, Suzuki T (2006) Conserved loop sequence of helix 69 in Escherichia coli 23 S rRNA is involved in A-site tRNA binding and translational fidelity. J Biol Chem 281:17203–17211

    Article  PubMed  CAS  Google Scholar 

  • Kelly KS, Ochi K, Jones GH (1991) Pleiotropic effects of a relC mutation in Streptomyces antibioticus. J Bacteriol 173:2297–3003

    PubMed  CAS  Google Scholar 

  • Kiparisov S, Petrov A, Meskauskas A, Sergiev PV, Dontsova OA, Dinman JD (2005) Structural and functional analysis of 5S rRNA. Mol Genet Genomics 27:235–247

    Article  CAS  Google Scholar 

  • Kirsebom LA, Amons R, Isaksson LA (1986) Primary structures of mutationally altered ribosomal protein L7/L12 and their effects on cellular growth and translational accuracy. Eur J Biochem 156:669–675

    Article  PubMed  CAS  Google Scholar 

  • Kirsebom LA, Isaksson LA (1985) Involvement of ribosomal protein L7/L12 in control of translational accuracy. Proc Natl Acad Sci USA 82:717–721

    Article  PubMed  CAS  Google Scholar 

  • Komoda T, Sato NS, Phelps SS, Namba N, Joseph S, Suzuki T (2006) The A-site finger in 23 S rRNA acts as a functional attenuator for translocation. J Biol Chem 281:32303–32309

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis TC, Patsoukis N, Georgiou CD, Synetos D (2006) Translational Fidelity Mutations in 18S rRNA Affect the Catalytic Activity of Ribosomes and the Oxidative Balance of Yeast Cells. Biochemistry 45:3225–3533

    Article  CAS  Google Scholar 

  • Korostelev A, Trakhanov S, Laurberg M, Noller HF (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Kühberger R, Piepersberg W, Petzet A, Buckel P, Böck A (1979) Alteration of ribosomal protein L6 in gentamicin-resistant strains of Escherichia coli. Effects on fidelity of protein synthesis. Biochemistry 18:187–193

    Article  PubMed  Google Scholar 

  • Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF (2008) Structural basis for translation termination on the 70S ribosome. Nature 454:852–857.

    Article  PubMed  CAS  Google Scholar 

  • Lee SI, Umen JG, Varmus HE (1995) A genetic screen identifies cellular factors involved in retroviral −1 frameshifting. Proc Natl Acad Sci USA 92:6587–6591

    Article  PubMed  CAS  Google Scholar 

  • Le Roy F, Salehzada T, Bisbal C, Dougherty JP, Peltz SW (2005) A newly discovered function for RNase L in regulating translation termination. Nat Struct Mol Biol 12:505–512

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Holland-Staley CA, Cunningham P R (1996) Genetic analysis of the Shine-Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 2:1270–1285

    PubMed  CAS  Google Scholar 

  • Leipuviene R, Björk GR (2007) Alterations in the two globular domains or in the connecting alpha-helix of bacterial ribosomal protein L9 induces +1 frameshifts. J Bacteriol 189:7024–7031

    Article  PubMed  CAS  Google Scholar 

  • Liiv A, O’Connor M (2006) Mutations in the intersubunit bridge regions of 23 S rRNA. J Biol Chem 281:29850–29862

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Liebman SW (1996) A translational fidelity mutation in the universally conserved sarcin/ricin domain of 25S yeast ribosomal RNA. RNA 2:254–263

    PubMed  CAS  Google Scholar 

  • Lodmell JS, Gutell RR, Dahlberg AE (1995) Genetic and comparative analyses reveal an alternative secondary structure in the region of nt 912 of Escherichia coli 16S rRNA. Proc Natl Acad Sci USA 92:10555–10559

    Article  PubMed  CAS  Google Scholar 

  • Maisnier-Patin S, Berg OG, Liljas L, Andersson DI (2002) Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol Microbiol 46:355–366

    Article  PubMed  CAS  Google Scholar 

  • Melançon P, Lemieux C, Brakier-Gingras L (1988) A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res 16:9631–9639

    Article  PubMed  Google Scholar 

  • Melançon P, Tapprich WE, Brakier-Gingras L (1992) Single-base mutations at position 2661 of Escherichia coli 23S rRNA increase efficiency of translational proofreading. J Bacteriol 174:7896–7901

    PubMed  Google Scholar 

  • Meskauskas A, Baxter JL, Carr EA, Yasenchak J, Gallagher JEG, Baserga SJ, Dinman JD (2003a) Delayed rRNA processing results in significant ribosome biogenesis and functional defects. Mol Cell Biol 23:1602–1613

    Google Scholar 

  • Meskauskas A, Dinman JD (2007) Ribosomal protein L3:Gatekeeper to the A-site. Mol Cell 25:877–888

    Article  PubMed  CAS  Google Scholar 

  • Meskauskas A, Dinman JD (2008) Ribosomal protein L3 functions as a ‘rocker switch’ to aid in coordinating of large subunit-associated functions in eukaryotes and Archaea. Nucl Acids Res 36:6175–6186

    Google Scholar 

  • Meskauskas A, Harger JW, Jacobs KLM, Dinman JD (2003b) Decreased peptidyltransferase activity correlates with increased programmed −1 ribosomal frameshifting and viral maintenance defects in the yeast Saccharomyces cerevisiae. RNA 9:982–992

    Google Scholar 

  • Meskauskas A, Petrov AN, Dinman JD (2005) Identification of functionally important amino acids of ribosomal protein L3 by saturation mutagenesis. Mol Cell Biol 25:10863–10874

    Article  PubMed  CAS  Google Scholar 

  • Meskauskas A, Russ JR, Dinman JD (2008) Structure/function analysis of yeast ribosomal protein L2. Nucleic Acids Res 36:1826–1835

    Article  PubMed  CAS  Google Scholar 

  • Muldoon-Jacobs KL, Dinman JD (2006) Specific effects of ribosome-tethered molecular chaperones on programmed −1 ribosomal frameshifting. Eukaryot Cell 5:762–770

    Article  PubMed  CAS  Google Scholar 

  • Murgola EJ, Hijazi KA, Göringer HU, Dahlberg AE (1988) Mutant 16S ribosomal RNA: a codon-specific translational suppressor. Proc Natl Acad Sci USA 85:4162–4165

    Article  PubMed  CAS  Google Scholar 

  • Murgola EJ, Pagel FT, Hijazi KA, Arkov AL, Xu W, Zhao SQ (1995) Variety of nonsense suppressor phenotypes associated with mutational changes at conserved sites in Escherichia coli ribosomal RNA. Biochem Cell Biol 73:925–931

    Article  PubMed  CAS  Google Scholar 

  • Namy O, Moran SJ, Stuart DI, Gilbert RJ, Brierley I (2006) A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441:244–247

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M (2007) Interaction between the ribosomal subunits:16S rRNA suppressors of the lethal DeltaA1916 mutation in the 23S rRNA of Escherichia coli. Mol Genet Genomics 278:307–315

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Brunelli CA, Firpo MA, Gregory ST, Lieberman KR, Lodmell JS, Moine H, Van Ryk DI, Dahlberg AE (1995) Genetic probes of ribosomal RNA function Biochem Cell Biol 73:859–868

    Article  PubMed  Google Scholar 

  • O’Connor M, Dahlberg AE (1993)Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. Proc Natl Acad Sci USA 90:9214–9218

    Article  PubMed  Google Scholar 

  • O’Connor M, Dahlberg AE (1995) The involvement of two distinct regions of 23 S ribosomal RNA in tRNA selection. J Mol Biol 254:838–847

    Article  PubMed  Google Scholar 

  • O’Connor M, Dahlberg AE (1996) The influence of base identity and base pairing on the function of the alpha-sarcin loop of 23S rRNA. Nucleic Acids Res 24:2701–2705

    Article  PubMed  Google Scholar 

  • O’Connor M, Gregory ST, Dahlberg AE (2004) Multiple defects in translation associated with altered ribosomal protein L4. Nucleic Acids Res 32:5750–5756

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Lee WM, Mankad A, Squires CL, Dahlberg AE (2001) Mutagenesis of the peptidyltransferase center of 23S rRNA: the invariant U2449 is dispensable Nucleic Acids Res 29:710–715

    Article  PubMed  Google Scholar 

  • O’Connor M, Thomas CL, Zimmermann RA, Dahlberg AE (1997) Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res 25:1185–1193

    Article  PubMed  Google Scholar 

  • O’Connor M, Willis NM, Bossi L, Gesteland RF, Atkins JF (1993) Functional tRNAs with altered 3’ ends. EMBO J 12:2559–2566

    PubMed  Google Scholar 

  • Ogle JM, Carter AP, Ramakrishnan V (2003) Insights into the decoding mechanism from recent ribosome structures. Trends Biochem Sci 28:259–266

    Article  PubMed  CAS  Google Scholar 

  • Ortiz PA, Ulloque R, Kihara GK, Zheng H, Kinzy TG (2006) Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance. J Biol Chem 281:32639–32648

    Article  PubMed  CAS  Google Scholar 

  • Ozaki M, Mizushima S, Nomura M (1969) Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222:333–339

    Article  PubMed  CAS  Google Scholar 

  • Panopoulos P, Dresios J, Synetos D (2004) Biochemical evidence of translational infidelity and decreased peptidyltransferase activity by a sarcin/ricin domain mutation of yeast 25S rRNA. Nucleic Acids Res 32:5398–5408

    Article  PubMed  CAS  Google Scholar 

  • Parker, J, Watson, R.J, Friesen J D, Fiil N,P (1976) A relaxed mutant with an altered ribosomal protein L11. Mol Gen Genet 144:111–114

    Article  PubMed  CAS  Google Scholar 

  • Petrov AN, Meskauskas A, Roshwalb SC, Dinman JD (2008) Yeast ribosomal protein L10 helps coordinate tRNA movement through the large subunit. Nucleic Acids Res 36:6187–6198

    Google Scholar 

  • Petry S, Brodersen DE, Murphy FV. 4th, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Piepersberg W, Böck A, Yaguchi M, Wittmann HG (1975) Genetic position and amino acid replacements of several mutations in ribosomal protein S5 from Escherichia coli. Mol Gen Genet 143:43–52

    Article  PubMed  CAS  Google Scholar 

  • Pinard R, Côté M, Payant C, Brakier-Gingras L (1994) Positions 13 and 914 in Escherichia coli 16S ribosomal RNA are involved in the control of translational accuracy. Nucleic Acids Res 22:619–624

    Article  PubMed  CAS  Google Scholar 

  • Rakauskaite R, Dinman JD (2006) An arc of unpaired “hinge bases” facilitates information exchange among functional centers of the ribosome. Mol Cell Biol 26:8992–9002

    Article  PubMed  CAS  Google Scholar 

  • Rakauskaite R, Dinman JD (2008) rRNA mutants in the yeast peptidyltransferase center reveal allosteric information networks and mechanisms of drug resistance. Nucl Acids Res 36:1497–1507

    Article  PubMed  CAS  Google Scholar 

  • Robert F, Brakier-Gingras L (2003) A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome. J Biol Chem 278:44913–44920

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Gromadski KB, Kothe U, Wieden HJ (2005) Recognition and selection of tRNA in translation. FEBS Lett 579:579–942

    Article  CAS  Google Scholar 

  • Roth JR (1981) Frameshift suppression. Cell 24:601–602

    Article  PubMed  CAS  Google Scholar 

  • Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, Cordon-Cardo C, Pandolfi PP (2003) Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299:259–262

    Article  PubMed  CAS  Google Scholar 

  • Rydén-Aulin M, Shaoping Z, Kylsten P, Isaksson LA (1993) Ribosome activity and modification of 16S RNA are influenced by deletion of ribosomal protein S20. Mol Microbiol 7:983–992

    Article  PubMed  Google Scholar 

  • Saarma U, Remme J (1992) Novel mutants of 23S RNA: Characterization of functional properties. Nucleic Acids Res 20:3147–3152

    Article  PubMed  CAS  Google Scholar 

  • Saarma U, Remme J, Ehrenberg M, Bilgin N (1997) An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function. J Mol Biol 272:327–335

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Ito K, Nakamura Y (2006) Ribosomal protein L11 mutations in two functional domains equally affect release factors 1 and 2 activity. Mol Microbiol 60:108–120

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Sergiev PV, Kiparisov SV, Burakovsky DE, Lesnyak DV, Leonov AA, Bogdanov AA, Dontsova OA (2005a) The conserved A-site finger of the 23S rRNA: just one of the intersubunit bridges or a part of the allosteric communication pathway? J Mol Biol 353:116–123

    Google Scholar 

  • Sergiev PV, Lesnyak DV, Kiparisov SV, Burakovsky DE, Leonov AA, Bogdanov AA, Brimacombe R, Dontsova OA (2005b) Function of the ribosomal E-site: A mutagenesis study. Nucleic Acids Res 33:6048–6056

    Google Scholar 

  • Smith MW, Meskauskas A, Wang P, Sergiev PV, Dinman JD (2001) Saturation mutagenesis of 5S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 21:8264–8275

    Article  PubMed  CAS  Google Scholar 

  • Spahn CM, Gomez-Lorenzo MG, Grassucci RA, Jorgensen R, Andersen GR, Beckmann R, Penczek PA, Ballesta JP, Frank J (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 23:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Takyar S, Hickerson RP, Noller HF (2005) mRNA helicase activity of the ribosome. Cell 120:19–58

    Article  CAS  Google Scholar 

  • Tate WP, Schulze H, Nierhaus KH (1983) The Escherichia coli ribosomal protein L11 suppresses release factor 2 but promotes the release factor 1 activities in peptide chain termination. J Biol Chem 258:12816–12820

    PubMed  CAS  Google Scholar 

  • Thompson J, Kim DF, O’Connor M, Lieberman KR, Bayfield MA, Gregory ST, Green R, Noller HF, Dahlberg AE (2001) Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc Natl Acad Sci USA. 98:9002–9007

    Article  PubMed  CAS  Google Scholar 

  • Topisirovic L, Villarroel R, De Wilde M, Herzog A, Cabezón T, Bollen A (1977) Translational fidelity in Escherichia coli: contrasting role of neaA and ramA gene products in the ribosome functioning. Mol Gen Genet 151:89–94

    Article  PubMed  CAS  Google Scholar 

  • Tumer NE, Parikh B, Li P, Dinman JD (1998) Pokeweed antiviral protein specifically inhibits Ty1 directed +1 ribosomal frameshifting and Ty1 retrotransposition in Saccharomyces cerevisiae. J Virol 72:1036–1042

    PubMed  CAS  Google Scholar 

  • Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N, Nierhaus KH, Agrawal RK, Frank J (2002) Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J 21:3557–3567

    Article  PubMed  CAS  Google Scholar 

  • Valle M, Zavialov A, Li W, Stagg SM, Sengupta J, Nielsen RC, Nissen P, Harvey SC, Ehrenberg M, Frank J (2003) Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Biol 10:899–906

    Article  PubMed  CAS  Google Scholar 

  • Van Dyke N, Xu W, Murgola EJ (2002) Limitation of ribosomal protein L11 availability in vivo affects translation termination. J Mol Biol 319:329–339

    Article  PubMed  CAS  Google Scholar 

  • Velichutina IV, Dresios J, Hong JY, Li C, Mankin A, Synetos D, Liebman SW (2000) Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome. RNA 6:1174–1184

    Article  PubMed  CAS  Google Scholar 

  • Velichutina IV, Hong JY, Mesecar AD, Chernoff YO, Liebman SW (2001) Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA. J Mol Biol 305:715–727

    Article  PubMed  CAS  Google Scholar 

  • Vila-Sanjurjo A, Lu Y, Aragonez JL, Starkweather RE, Sasikumar M, O’Connor M (2007) Modulation of 16S rRNA function by ribosomal protein S12. Biochim Biophys Acta (1769):462–471

    Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Porter-Ridley S, Fried HM, Ball SG (1982) Ribosomal protein L3 is involved in replication or maintenance of the killer double-stranded RNA genome of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 79:4706–4708

    Article  PubMed  CAS  Google Scholar 

  • Widerak M, Kern R, Malki A, Richarme G (2005) U2552 methylation at the ribosomal A-site is a negative modulator of translational accuracy. Gene 347:109–114

    Article  PubMed  CAS  Google Scholar 

  • Yano R, Yura T (1989) Suppression of the Escherichia coli rpoH opal mutation by ribosomes lacking S15 protein. J Bacteriol 171:1712–1717

    PubMed  CAS  Google Scholar 

  • Youngman EM, Brunelle JL, Kochaniak AB, and Green R (2004) The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117:589–599

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann RA, Garvin RT, Gorini L (1971) Alteration of a 30S ribosomal protein accompanying the ram mutation in Escherichia coli. Proc Natl Acad Sci USA 68:2263–2267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories was supported by grants GM058859 and AI064307 from the National Institutes of Health (to J.D.D.) and MCB0745025 from the National Science Foundation (to M.OC.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Dinman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dinman, J.D., O’Connor, M. (2010). Mutants That Affect Recoding. In: Atkins, J., Gesteland, R. (eds) Recoding: Expansion of Decoding Rules Enriches Gene Expression. Nucleic Acids and Molecular Biology, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89382-2_15

Download citation

Publish with us

Policies and ethics