Skip to main content

Crustacean zooplankton fatty acid composition

  • Chapter
  • First Online:
Lipids in Aquatic Ecosystems

Abstract

Fatty acids (FA) are among the most important molecules transferred across the plant–animal interface in aquatic food webs. Particular classes of FA, such as the n-3 highly unsaturated fatty acids (HUFA), are important somatic growth limiting compounds for herbivorous zooplankton (Müller-Navarra 1995a; Müller-Navarra et al. 2000; Ravet et al. 2003). These molecules are also critical for the growth, disease resistance, and general well being of juvenile fish (Adams 1999; Olsen 1999; Sargent et al. 1999). Thus, knowing how nutritionally important FA are conveyed through food webs has important implications for understanding economically important fisheries. A very substantial literature shows these same molecules have a wide range of positive impacts on human health (Simopoulos 1999; Arts et al. 2001). Specific FA may also help interpret trophic relations in aquatic systems (Dalsgaard et al. 2003), as the group specific FA composition of primary producers varies greatly (Volkman et al. 1989; Ahlgren et al. 1992). Therefore, it is important to understand how much the FA composition of zooplankton is determined by taxonomic affiliation, changed by diet, and modified by starvation or temperature. It is also essential to know whether zooplankton maintain a semiconstant FA profile relative to their diets or, alternatively, bioconvert some FA into other FA molecules. This review will summarize the published information on how these factors regulate the FA composition of freshwater and marine zooplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Homeoviscous response refers to the modification of membrane lipid composition to maintain similar physical properties across a range of water temperatures.

  2. 2.

    In this chapter, we will use PUFA to refer to 16 and 18 carbon chain (C16 and C18) FA with two or more double bonds and HUFA to represent the subset of C20 and C22 PUFA.

  3. 3.

    A homeostatic response refers to a generally fixed elemental or biochemical composition in a consumer despite considerable variation in their diet. A “quasi-homeostatic” response indicates some (but much less) variation in the elemental or biochemical composition of a consumer compared to their diet.

References

  • Abrusán, G., Fink, P., and Lampert, W. 2007. Biochemical limitation of resting egg production in Daphnia. Limnol. Oceangr. 52:1724–1728.

    Article  Google Scholar 

  • Ackman, R.G. and Eaton, C.A. 1966. Lipids of the fin whale (Baluenoptera physalus) from North Atlantic waters. III. Occurrence of eicosenoic and docosenoic fatty acids in the zooplankter Meganyctiphanes norvegica (M. Sars) and their effect on whale oil composition. Can. J. Biochem. 44:1561–1566.

    Article  CAS  Google Scholar 

  • Adams, S.M. 1999. Ecological role of lipids in the health and success of fish populations, pp.132–160. In M.T. Arts and B.C. Wainman [eds.], Lipids in Freshwater Ecosystems. Springer, New York.

    Google Scholar 

  • Ahlgren, G., Lundstedt, L., Brett, M.T., and Forsberg, C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12:809–818.

    Article  CAS  Google Scholar 

  • Ahlgren, G., Gustafsson, I.-B., and Boberg, M. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37–50.

    Article  CAS  Google Scholar 

  • Arhonditsis, G.B., Brett, M.T., and Frodge, J. 2003. Environmental control and limnological impacts of a large recurrent spring bloom in Lake Washington, USA. Env. Manag. 31:603–618.

    Article  CAS  Google Scholar 

  • Arts, M.T., Ackman, R.G., and Holub, B.J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J. Fish. Aq. Sci. 58:122–137.

    Article  CAS  Google Scholar 

  • Arts, M.T., Evans, M.S., and Robarts, R.D. 1992. Seasonal patterns of total and energy reserve lipids of dominant zooplanktonic crustaceans from a hypereutrophic lake. Oecologia 90:560–571.

    Article  Google Scholar 

  • Ballantyne, A.P., Brett, M.T., and Schindler, D.E. 2003. The importance of dietary phosphorus and highly unsaturated fatty acids for sockeye (Oncorhynchus nerka) growth in Lake Washington – a bioenergetics approach. Can J. Fish. Aq. Sci. 60:12–22.

    Article  CAS  Google Scholar 

  • Bourdier, G., and Amblard, C. 1989. Lipids in Acanthodiaptomus denticornis during starvation and fed on three different algae. J. Plankton Res. 11:1201–1212.

    Article  CAS  Google Scholar 

  • Brett, M.T., Müller-Navarra, D.C., Ballantyne, A.P., and Ravet, J.L. 2006. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr. 51:2428–2437.

    Article  CAS  Google Scholar 

  • Broglio, E., Jonasdóttir, S.H., Calbet, A., Jakobsen, H.H., Saiz, E. 2003. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat. Microb. Ecol. 31:267–278.

    Article  Google Scholar 

  • Caramujo, M.-J., Boschker, H.T.S., and Admiraal, W. 2008. Fatty acid profiles of algae mark the development and composition of harpacticoid copepods. Freshw. Biol. 53:77–90.

    CAS  Google Scholar 

  • Coutteau, P., and Mourente, G. 1997. Lipid classes and their content of n-3 highly unsaturated fatty acids (HUFA) in Artemia franciscana after hatching, HUFA-enrichment and subsequent starvation. Mar. Biol. 130:81–91.

    Article  CAS  Google Scholar 

  • Cripps, G.C., and Atkinson, A. 2000. Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Can. J. Fish. Aq. Sci. 57:31–37. Suppl. 3.

    Article  CAS  Google Scholar 

  • Cripps, G.C., Watkins, J.L., Hill, H.J., and Atkinson, A. 1999. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Mar. Ecol. Prog. Ser. 181:177–188.

    Article  CAS  Google Scholar 

  • Csengeri, I., and Halver, J.E. 2006. Tibor Farkas 1929–2003. A biographical memoir. National Academy of Sciences, Washington, D.C. 27 pgs.

    Google Scholar 

  • D’Abramo, L.R., and Sheen, S.-S. 1993. Polyunsaturated fatty acid nutrition in juvenile freshwater prawn Macrobrachium rosenbergii. Aquaculture 115:63–86.

    Article  Google Scholar 

  • Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D.C., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine food environment. Adv. Mar. Biol. 46:226–340.

    Google Scholar 

  • Desvilettes, C., Bourdier, G., Amblard, C., and Barth, B. 1997. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshw. Biol. 38:629–637.

    Article  CAS  Google Scholar 

  • Dunstan, G.A., Volkman, J.K., Barrett, S.M., Leroi, J.M., and Jeffrey, S.W. 1994. Essential polyunsaturated fatty-acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155–161.

    Article  CAS  Google Scholar 

  • Dunstan, G.A., Brown, M.R., and Volkman, J.K. 2005. Cryptophyceae and Rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry 66:2557–2570.

    Article  PubMed  CAS  Google Scholar 

  • Ederington, M.C., McManus, G.B., and Harvey, H.R. 1995. Trophic transfer of fatty-acids, sterols, and a triterpeniod alcohol between bacteria, a ciliate, and the copepod Acartia tonsa. Limnol. Oceanogr. 40:860–867.

    Article  CAS  Google Scholar 

  • Elendt, B.-P. 1990. Nutritional quality of a microencapsulated diet for Daphnia magna. Effects on reproduction, fatty acid composition, and midgut ultrastructure. Arch. Hydrobiol. 118:461–475.

    CAS  Google Scholar 

  • Falk-Petersen, S., Hagen, W., Kattner, G., Clarke, A., and Sargent, J.R. 2000. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can. J. Fish. Aq Sci. 57:178–191. Suppl. 3.

    Article  CAS  Google Scholar 

  • Farkas, T. 1970. Fats in fresh water crustaceans. Acta Biol. Acad. Sci. Hung. 21:225–233.

    Article  PubMed  CAS  Google Scholar 

  • Farkas, T. 1979. Adaptation of fatty-acid compositions to temperature-study on planktonic crustaceans. Comp. Biochem. Physiol. 64B:71–76.

    CAS  Google Scholar 

  • Farkas, T., and Herodek, S. 1964. Effect of environmental temperature on fatty acid composition of crustacean plankton. J. Lipid Res. 5:369–373.

    PubMed  CAS  Google Scholar 

  • Farkas, T., Nemecz, G., and Csengeri, I. 1984. Differential response of lipid-metabolism and membrane physical state by an actively and passively over wintering planktonic crustacean. Lipids 19:436–442.

    Article  CAS  Google Scholar 

  • Fraser, A.J., Sargent, J.R., Gamble, J.C., and Seaton, D.D. 1989. Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Mar. Chem. 27:1–18.

    Article  CAS  Google Scholar 

  • Gatenby, C.M., Orcutt, D.M., Kreeger, D.A., Parker, B.C., Jones, V.A., and Neves, R.J. 2003. Biochemical composition of three algal species proposed as food for captive freshwater mussels. J. Appl. Phycol. 15:1–11.

    Article  CAS  Google Scholar 

  • Goulden, C. E., and Place, A. R. 1990. Fatty acid synthesis and accumulation rates in daphnids. J. Exp. Zool. 256:168–178.

    Article  CAS  Google Scholar 

  • Graeve, M., Kattner, G., and Hagen, W. 1994. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J. Exp. Mar. Biol. Ecol. 182:97–110.

    Article  CAS  Google Scholar 

  • Graeve, M., Albers, C., and Kattner, G. 2005. Assimilation and biosynthesis of lipids in Arctic Calanus species based on feeding experiments with a 13C labelled diatom. J. Exp. Mar. Biol. Ecol. 317:109–125.

    Article  CAS  Google Scholar 

  • Hagen, W., Kattner, G., and Graeve, M. 1993. Calanoides acutus and Calanus propinquus, Antarctic copepods with different lipid storage modes via wax esters or triacylglycerols. Mar. Ecol. Prog. Ser. 97:135–142.

    Article  CAS  Google Scholar 

  • Hagen, W., van Vleet, E.S., and Kattner, G. 1996. Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar. Ecol. Progr. Ser. 134:85–89.

    Article  CAS  Google Scholar 

  • Hagen, W., Kattner, G., Terbruggen, A., and Van Vleet, E.S. 2001. Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar. Biol. 139:95–104.

    Article  CAS  Google Scholar 

  • Hazel, J.R. 1995. Thermal adaptation in biological-membranes- is homeoviscous adaptation the explanation. Ann. Rev. Physiol. 57:19–42.

    Article  CAS  Google Scholar 

  • Henderson, R.J., Park, M.T., and Sargent, J.R. 1995. The desaturation and elongation of 14C-labelled polyunsaturated fatty acids by pike (Esox lucius L.) in vivo. Fish Physiol. Biochem. 14:223–235.

    Article  CAS  Google Scholar 

  • Hessen, D.O., and Leu, E. 2006. Trophic transfer and trophic modification of fatty acids in high Arctic lakes. Freshw. Biol. 51:1987–1998.

    Article  CAS  Google Scholar 

  • Jeffries, H.P. 1970. Seasonal composition of temperate plankton communities: fatty acids. Limnol. Oceanogr. 15:419–426.

    Article  CAS  Google Scholar 

  • Jobling, M. 2004. Are modifications in tissue fatty acid profiles following a change in diet the result of dilution? Test of a simple dilution model. Aquaculture 232:551–562.

    Article  CAS  Google Scholar 

  • Jónasdóttir, S.H., Fields, D., and Pantoja, S. 1995. Copepod egg production in Long Island Sound USA, as a function of the chemical composition of seston. Mar. Ecol. Progr. Ser. 119:87–98.

    Article  Google Scholar 

  • Kainz, M., Arts, M.T., and Mazumder, A. 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr. 49:1784–1793.

    Article  CAS  Google Scholar 

  • Kattner, G., Graeve, M., and Hagen, W. 1994. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 118:637–644.

    Article  CAS  Google Scholar 

  • Langdon, C.J., and Waldock, M.J. 1981. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. Boil. Ass. U.K. 61:431–448.

    Article  CAS  Google Scholar 

  • Lee, R.F., Nevenzel, J.C., and Paffenhofer, G.-A. 1971. Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar. Biol. 9:99–108.

    Article  CAS  Google Scholar 

  • Lee, R.F., Hagen, W., and Kattner, G. 2006. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307:273–306.

    Article  CAS  Google Scholar 

  • Lenz, P.H., Hartline, D.K. and Davis, A.D. 2000. The need for speed. I. Fast reactions and myelinated axons in copepods. J. Comp. Phys. A 186:337–345.

    Article  CAS  Google Scholar 

  • Lewis, R.W. 1969. The fatty acid composition of arctic marine phytoplankton and zooplankton with special reference to minor acids. Limnol. Oceanogr. 14:35–40.

    Article  CAS  Google Scholar 

  • Lourenco, S.O., Barbarino, E., Mancini-Filho, J., Schinke, K.P., and Aidar, E. 2002. Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia 41:158–168.

    Article  Google Scholar 

  • Lovern, J.A. 1935. The fats of some plankton crustacea. Biochem. J. 29:847–849.

    PubMed  CAS  Google Scholar 

  • Müller-Navarra, D.C. 1995a. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch. Hydrobiol. 132:297–307.

    Google Scholar 

  • Müller-Navarra, D.C. 1995b. Biochemical versus mineral limitation in Daphnia. Limnol. Oceanogr. 40:1209–1214.

    Article  Google Scholar 

  • Müller-Navarra, D.C. 2006. The nutritional importance of polyunsaturated fatty acids and their use as trophic markers for herbivorous zooplankton: Does it contradict? Arch. Hydrobiol. 167:501–513.

    Article  Google Scholar 

  • Müller-Navarra, D.C., Brett, M.T., Liston, A., and Goldman, C.R. 2000. A highly-unsaturated fatty acid predicts biomass transfer between primary producers and consumers. Nature 403:74–77.

    Article  PubMed  Google Scholar 

  • Nanton, D.A., and Castell, J.D. 1998. The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp, for use as a live food for marine fish larvae. Aquaculture 163:251–261.

    Article  CAS  Google Scholar 

  • Nanton, D.A., and Castell, J.D. 1999. The effects of temperature and dietary fatty acids on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture 175:167–181.

    Article  CAS  Google Scholar 

  • Norsker, N.H., and Støttrup, J.G. 1994. The importance of dietary HUFA for fecundity and HUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture 125:155–166.

    Article  CAS  Google Scholar 

  • Olsen, Y. 1999. Lipids and essential fatty acids in aquatic food webs: what can freshwater ecologists learn from mariculture?, pp. 161–202. In M.T. Arts and B.C. Wainman [eds.], Lipids in Freshwater Ecosystems. Springer, New York.

    Google Scholar 

  • Palmtag, M.R., Faulk, C.K., and Holt, G.J. 2006. Highly unsaturated fatty acid composition of rotifers (Brachionus plicatilis) and Artemia fed various enrichments. J. World Aquaculture Soc. 37:126–131.

    Article  Google Scholar 

  • Parrish, C.C., McKenzie, C.H., MacDonald, B.A., and Hatfield, E.A. 1995. Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar. Ecol. Progr. Ser. 129:151–164.

    Article  CAS  Google Scholar 

  • Patil, V., Kallqvist, T., Olsen, E., Vogt, G., and Gislerod, H.R. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture Int. 15:1–9.

    Article  CAS  Google Scholar 

  • Persson, J., and Vrede, T. 2006. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw. Biol. 51:887–900.

    Article  CAS  Google Scholar 

  • Persson, J., Brett, M.T., Vrede, T., and Ravet, J.L. 2007. Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116:1152–1163.

    Article  Google Scholar 

  • Peters, J., Renz, J., van Beusekom, J., Boersma, M., and Hagen, W. 2006. Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in the Central Baltic Sea (Bornholm Basin): evidence from lipid composition. Mar. Biol. 149:1417–1429.

    Article  CAS  Google Scholar 

  • Pond, D.W., Atkinson, A., Shreeve, R.S., Tarling, G., and Ward, P. 2005. Diatom fatty acid biomarkers indicate recent growth rates in Antarctic krill. Limnol. Oceanogr. 50:732–736.

    Article  CAS  Google Scholar 

  • Provasoli, L., and D’Agostino, A. 1969. Development of artificial media for Artemia salina. Biol. Bull. 136:434–453.

    Article  CAS  Google Scholar 

  • Ravet, J.L., Brett, M.T., and Arhonditsis, G.B. 2009. The effects of seston lipids on zooplankton fatty acid composition in Lake Washington. Ecology (in press).

    Google Scholar 

  • Ravet, J.L., Brett, M.T., and Müller-Navarra, D.C. 2003. A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation. Limnol. Oceanogr. 48:1938–1947.

    Article  CAS  Google Scholar 

  • Reitan, K.I., Rainuzzo, J.R., and Olsen, Y. 1994. Effect of nutrient limitation on fatty-acid and lipid-content of marine microalgae. J. Phycol. 30:972–979.

    Article  CAS  Google Scholar 

  • Renaud, S.M., Thinh, L.V., and Parry, D.L. 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159.

    Article  CAS  Google Scholar 

  • Renaud, S.M., Thinh, L.V., Lambrinidis, G., and Parry, D.L. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:1–4.

    Article  Google Scholar 

  • Richoux, N.B., Deibel, D., Raymond, J., Thompson, R.J., and Parrish, C.C. 2005. Seasonal and developmental variation in the fatty acid composition of Mysis mixta (Mysidacea) and Acanthostepheia malmgreni (Amphipoda) from the hyperbenthos of a cold-ocean environment (Conception Bay, Newfoundland). J. Plankton Res. 27:719–733.

    Article  CAS  Google Scholar 

  • Sargent, J.R., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., and Tocher, D. 1999. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229.

    Article  CAS  Google Scholar 

  • Sargent, J.R., and Henderson, R.J., 1986. Lipids, pp. 59–108. In: E.D.S. Corner and S. O’Hara [eds.], Biological Chemistry of Marine Copepods, Oxford University Press, Oxford.

    Google Scholar 

  • Schlechtriem, C., Arts, M.T., and Zellmer, I.D. 2006. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (crustacea, cladocera) Lipids 41:397–400.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, K., Atkinson, A., Petzke, K.J., Voss, M., and Pond, D.W. 2006. Protozoans as a food source for Antarctic krill, Euphausia superba: Complementary insights from stomach content, fatty acids, and stable isotopes. Limnol. Oceanogr. 51:2409–2427.

    Article  CAS  Google Scholar 

  • Scott, C.L., Kwasniewski, S., Falk-Petersen, S., and Sargent, J.R. 2002. Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar. Ecol. Prog. Ser. 235:127–134.

    Article  CAS  Google Scholar 

  • Simopoulos, A.P. 1999. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 70:560S–569S.

    PubMed  CAS  Google Scholar 

  • Smyntek, P.M., Teece, M.A., Schulz, K.L., and Storch, A.J. 2008. Taxonomic differences in the essential fatty acid composition of groups of freshwater zooplankton relate to reproductive demands and generation time. Freshw. Biol. 53:1768–1782.

    Article  CAS  Google Scholar 

  • Stevens, C.J., Deibel, D., and Parrish, C.C. 2004. Copepod omnivory in the North Water Polynya (Baffin Bay) during autumn: spatial patterns in lipid composition. Deep-Sea Res. Part I 51:1637–1658.

    CAS  Google Scholar 

  • Stübing, D., Hagen, W., and Schmidt, K. 2003. On the use of lipid biomarkers in marine food web analyses: An experimental case study on the Antarctic krill, Euphausia superba. Limnol. Oceanogr. 48:1685–1700.

    Article  Google Scholar 

  • Tremblay, R., Cartier, S., Miner, P., Pernet, F., Quere, C., Moal, J., Muzellec, M.L., Mazuret, M., and Samain, J.F. 2007. Effect of Rhodomonas salina addition to a standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture 26:410–418.

    Article  Google Scholar 

  • Veloza, A.J., Chu, F.L., and Tang, K.W. 2006. Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar. Biol. 48:779–788.

    Article  Google Scholar 

  • Vismara, R., Vestri, S., Barsanti, L., and Gualtieri, P. 2003. Diet-induced variations in fatty acid content and composition of two on-grown stages of Artemia salina. J. Appl. Phycol. 15:477–483.

    Article  CAS  Google Scholar 

  • Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., and Garland, C.D. 1989. Fatty-acid and lipid-composition of 10 sepcies of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128:219–240.

    Article  CAS  Google Scholar 

  • Wacker, A., and Martin-Creuzburg, D. 2007. Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Funct. Ecol. 21:738–747.

    Article  Google Scholar 

  • Wacker, A., Becher, P., and von Elert, E., 2002. Food quality effects of unsaturated fatty acids on larvae of the zebra mussel Dreissena polymorpha. Limnol. Oceanogr. 47:1242–1248.

    Article  Google Scholar 

  • Weers, P.M.M., Siewertsen, K., and Gulati, R.D. 1997. Is the fatty acid composition of Daphnia galeata determined by the fatty acid composition of the ingested diet? Freshw. Biol. 38:731–738.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Brett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brett, M.T., Müller-Navarra, D.C., Persson, J. (2009). Crustacean zooplankton fatty acid composition. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_6

Download citation

Publish with us

Policies and ethics