Skip to main content
Log in

Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, cladocera)

  • Communications
  • Published:
Lipids

Abstract

Poikilothermic organisms accumulate highly unsturated FA (HUFA) in their lipids at reduced temperatures to maintain cell membrane fluidity. In this study we investigated the effect of temperature on temporal trajectories of FA of fasting Daphnia pulex cultured on a HUFA-free diet. Daphnia pulex populations were maintained for 1 mon at 22 and 11°C and were fed the chlorophyte Ankistrodesmus falcatus. We observed conversion of C18 FA precursors to EPA (20∶5n3) and arachidonic acid (ARA; 20∶4n6) in D. pulex. We showed that long-term exposure to cold temperature causes a significant increase in EPA, HUFA such as ARA and EPA are highly conserved during starvation. Therefore, D. pulex has the biosynthetic capacity to adjust and to maintain the content of HUFA required to survive at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AF:

Ankistrodesmus falcatus

ALA:

α-linolenic acid

ARA:

arachidonic acid

DA11:

Daphia pulex cultured at 11°C

DA22:

Daphnia pulex cultured at 22°C

HUFA:

Highly unsaturated FA

LIN:

linoleic acid

MUFA:

monounsaturated FA

TFA:

total FA content

References

  1. Pennak, R.W. (1989) Freshwater Invertebrates of the United States, 3rd edn., John Wiley & Sons, New York.

    Google Scholar 

  2. Goss, L.B., and Bunting, D.L. (1983) Daphnia Development and Reproduction: Responses to Temperature. J. Therm. Biol. 8, 375–380.

    Article  Google Scholar 

  3. Pruitt, N.L. (1990) Adaptations to Temperature in the Cellular Membranes of Crustacean: Membrane Structure and Metabolism, J. Therm. Biol. 15, 1–8.

    Article  Google Scholar 

  4. Hazel, J.R., and Williams, E.E. (1990) The Role of Alterations in Membrane Lipid Composition in Enabling Physiological Adaptation of Organisms to Their Physical Environment, Prog. Lipid Res., 29, 167–227.

    Article  PubMed  CAS  Google Scholar 

  5. Sargent, J.R., Tocher, D.R., and Bell, J.G. (2002) The Lipids, in Fish Nutrition, Halver, J.E., and Hardy, R.W., eds., pp. 181–257, Academic Press, San Diego.

    Google Scholar 

  6. Von Elert, E. (2002) Determination of Limiting Polyunsaturated Fatty Acids in Daphnia galeata Using a New Method to Enrich Food Algae with Single Fatty Acids, Limnol. Oceanogr. 47, 1764–1773.

    Article  Google Scholar 

  7. Becker, C., and Boersma, M. (2005) Differential Effects of Phosphorus and Fatty Acids on Daphnia, Growth and Reproduction, Limnol. Oceanogr. 50, 388–397.

    Article  CAS  Google Scholar 

  8. Farkas, T. (1979) Adaptation of Fatty Acid Compositions to Temperature—A Study on Planktonic Crustaceans, Comp. Biochem. Physiol., 64B, 71–76.

    CAS  Google Scholar 

  9. Farkas, T., Kariko, K., and Csengeri, I. (1981) Incorporation of [1-14C]Acetate into Fatty Acids of the Crustaceans Daphnia magna and Cyclops strenus in Relation to Temperature, Lipids 16, 418–422.

    Article  CAS  Google Scholar 

  10. Stanley-Samuelson, D.W. (1994) Prostaglandins and Related Eicosanoids in Insects, Adv. Insect Physiol. 24, 115–212.

    Article  CAS  Google Scholar 

  11. Goulden, C.E., and Place, A.R. (1990) Fatty Acid Synthesis and Accumulation Rates in Daphniids, J. Exp. Zool. 256, 168–178.

    Article  CAS  Google Scholar 

  12. Bychek, E.A., Dobson, G.A., Harwood, J.L., and Guschina, I.A. (2005) Daphnia magna Can Tolerate Short-Term Starvation Without Major Changes in Lipid Metabolism, Lipids 40, 599–608.

    Article  PubMed  CAS  Google Scholar 

  13. Stein, J. (1973) Handbook of Phycological Methods. Culture Methods and Growth Measurements, Cambridge University Press, Cambridge.

    Google Scholar 

  14. Elendt, B.P. (1989) Effects of Starvation on Growth, Reproduction, Survival and Biochemical Composition of Daphnia magna, Arch. Hydrobiol. 116, 415–433.

    CAS  Google Scholar 

  15. Bligh, E.G., and Dyer, W.J. (1959) A Rapid, Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917

    PubMed  CAS  Google Scholar 

  16. Sokal, R.R., and Rohlf, F.J. (1995) Biometry, 3rd edn., W.H. Freeman, New York.

    Google Scholar 

  17. DeMott, W.R., and Müller-Navarra, D.C. (1997) The Importance of Highly Unsaturated Fatty Acids in Zooplankton Nutrition: Evidence from Experiments with Daphnia, a Cyanobacterium and Lipid Emulsions, Freshwater Biol. 38, 649–664.

    Article  CAS  Google Scholar 

  18. Sundbom, M., and Vrede, T. (1997), Effects of Fatty Acid and Phosphorus Content of Food on the Growth, Survival and Reproduction of Daphnia, Freshwater Biol. 38, 665–674.

    Article  CAS  Google Scholar 

  19. Klein Breteler, W.C.M., Schogt, N., Baas, M., Schouten, S., and Kraay, G.W. (1999) Trophic Upgrading of Food Quality by Protozoans Enhancing Copepod Growth: Role of Essential Lipids, Mar. Biol. 135, 191–198.

    Article  Google Scholar 

  20. Tiku, P.E., Gracey, A.Y., Macartney, A.I., Beynon, R.J., and Cossins, A.R. (1996) Cold Induced Expression of Δ9-Desaturase in Carp by Transcriptional and Post-translational Mechanisms, Science 271, 815–818.

    Article  PubMed  CAS  Google Scholar 

  21. Gunstone, F.D., Harwood, J.L., and Padley, F.B. (1986) The Lipid Handbook, Chapman and Hall, London.

    Google Scholar 

  22. Peters, R.H. (1987) Metabolism in Daphnia, in Daphnia (Peters, R.H., and de Bernardi, R., eds.) Vol. 45, pp. 193–243, Memoirie dell'Instituto Italiano de Idrobiologia, Verbania, Pallanza.

    Google Scholar 

  23. Schmidt-Nielsen, K. (1997) Animal Physiology—Adaptation and Environment, 5th edn., Cambridge University Press, Cambridge.

    Google Scholar 

  24. Kainz, M., Arts, M.T., and Mazumder, A. (2004) Essential Fatty Acids in the Planktonic, Food Web and Their Ecological Role for Higher Trophic Levels, Limnol. Oceanogr. 49, 1784–1793.

    Article  CAS  Google Scholar 

  25. Threlkeld, S.T. (1976) Starvation and the Size Structure of Zooplankton Communities, Freshwater Biol. 6, 489–96.

    Article  Google Scholar 

  26. Tessier, A.J., Henry, L.L., Goulden, C.E., Durand, M.W., (1983) Starvation in Daphnia: Energy Researves and Reproductive Allocation, Limnol. Oceanogr. 28, 667–676.

    Article  Google Scholar 

  27. Johnson, G.H., and Jacobsen, P.J. (1987) The Effect of Food Limitation on Vertical Migration in Daphnia longispina, Limnol. Oceanogr. 32, 873–880.

    Google Scholar 

  28. Lemcke, H.W., and Lampert, W. (1975) Veränderungen im Gewicht und der chemischen Zusammensetzung von Daphnia pulex im Hunger, Arch. Hydrobiol. Suppl. 48, 108–137.

    Google Scholar 

  29. Dalsgaard, J.M., John, M.S., Kattner, G., Mueller-Navarra, D.C., and Hagen, W. (2003) Fatty Acid Trophic Markers in the Pelagic Marine Food Environment, Adv. Mar. Biol. 46, 226–340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schlechtriem.

About this article

Cite this article

Schlechtriem, C., Arts, M.T. & Zellmer, I.D. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, cladocera). Lipids 41, 397–400 (2006). https://doi.org/10.1007/s11745-006-5111-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5111-9

Keywords

Navigation