Skip to main content

Tropomyosin: Function Follows Structure

  • Chapter
Tropomyosin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 644))

Abstract

Tropomyosin is known as the archetypal coiled coil, being the first to be sequenced and modeled. Studies of the structure and dynamics of tropomyosin, accompanied by biochemical and biophysical analyses of tropomyosin, mutants and model peptides, have revealed the complexity and subtleties required for tropomyosin function. Interruptions in the canonical coiled coil allow for bends and regions of local instability that are required for tropomyosin to bind to the helical actin filament. This chapter highlights insights gained from recent structural studies as they relate to variations in tropomyosin’s coiled-coil structure that are essential for binding to actin and the relationship of periodic repeats to actin molecules in the filament.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perry SV. Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 2001; 22(1):5–49.

    Article  PubMed  CAS  Google Scholar 

  2. Brown JH, Cohen C. Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. Adv Protein Chem 2005; 71:121–159.

    Article  PubMed  CAS  Google Scholar 

  3. Lupas AN, Gruber M. The structure of alpha-helical coiled coils. Adv Protein Chem 2005; 70:37–78.

    Article  PubMed  CAS  Google Scholar 

  4. Bailey K. Tropomyosin: a new asymmetric protein component of muscle. Nature 1946; 157:368–369.

    Article  CAS  Google Scholar 

  5. Astbury WT, Reed R, Spark, LC. An X-ray and electron microscope study of tropomyosin. Biochem. J. 1948; 43:282–287.

    CAS  Google Scholar 

  6. Crick FHC. The packing of alpha-helices. Simple coiled-coils. Acta Crystallographica. 1953; 6:689–697.

    Article  CAS  Google Scholar 

  7. Hodges RS, Sodek, J, Smillie LB et al. Tropomyosin: Amino acid sequence and coiled-coil structure. Cold Spring Harbor Symp. Quant Biol 1972; 37:299–310.

    Google Scholar 

  8. Sodek J, Hodges RS, Smillie LB et al. Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc Natl Acad Sci USA 1972; 69(12):3800–3804.

    Article  PubMed  CAS  Google Scholar 

  9. Stone D, Smillie LB. The amino acid sequence of rabbit skeletal alpha-tropomyosin. The NH2-terminal half and complete sequence. J Biol Chem 1978; 253(4):1137–1148.

    PubMed  CAS  Google Scholar 

  10. McLachlan AD, Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol 1975; 98(2):293–304.

    Article  PubMed  CAS  Google Scholar 

  11. Parry DA. Analysis of the primary sequence of alpha-tropomyosin from rabbit skeletal muscle. J Mol Biol 1975; 98(3):519–535.

    Article  PubMed  CAS  Google Scholar 

  12. McLachlan AD, Stewart M, Smillie LB. Sequence repeats in alpha-tropomyosin. J Mol Biol 1975; 98(2):281–291.

    Article  PubMed  CAS  Google Scholar 

  13. O’Shea EK, Klemm JD, Kim PS et al. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 1991; 254(5031):539–544.

    Article  CAS  Google Scholar 

  14. Brown JH, Kim KH, Jun G et al. Deciphering the design of the tropomyosin molecule. Proc Natl Acad Sci USA 2001; 98(15):8496–8501.

    Article  PubMed  CAS  Google Scholar 

  15. Phillips GN Jr, Fillers JP, Cohen C. Motions of tropomyosin. Crystal as metaphor. Biophys J 1980; 32(1):485–502.

    Article  PubMed  CAS  Google Scholar 

  16. Phillips GN Jr, Fillers, JP, Cohen C. Tropomyosin crystal structure and muscle regulation. J Mol Biol 1986; 192(1):111–131.

    Article  PubMed  CAS  Google Scholar 

  17. Graceffa P, Lehrer SS. The excimer fluorescence of pyrene-labeled tropomyosin. A probe of conformational dynamics. J Biol Chem 1980; 255(23):11296–11300.

    PubMed  CAS  Google Scholar 

  18. Potekhin SA, Privalov PL. Co-operative blocks in tropomyosin. J Mol Biol 1982; 159(3):519–535.

    Article  PubMed  CAS  Google Scholar 

  19. Betteridge DR, Lehrer SS. Two conformational states of didansylcystine-labeled rabbit cardiac tropomyosin. J Mol Biol 1983; 167(2):481–496.

    Article  PubMed  CAS  Google Scholar 

  20. Ueno H. Local structural changes in tropomyosin detected by a trypsin-probe method. Biochemistry 1984; 23(20):4791–4798.

    Article  PubMed  CAS  Google Scholar 

  21. Swenson CA, Stellwagen NC. Flexibility of smooth and skeletal tropomyosins. Biopolymers 1989; 28(5):955–963.

    Article  PubMed  CAS  Google Scholar 

  22. Ishii Y, Hitchcock-DeGregori S, Mabuchi K et al. Unfolding domains of recombinant fusion alpha alpha-tropomyosin. Protein Sci 1992; 1(10):1319–1325.

    Article  PubMed  CAS  Google Scholar 

  23. Phillips GN Jr, Chacko S. Mechanical properties of tropomyosin and implications for muscle regulation. Biopolymers 1996; 38(1):89–95.

    Article  PubMed  CAS  Google Scholar 

  24. Ishii Y, Lehrer SS. Fluorescence studies of the conformation of pyrene-labeled tropomyosin: effects of F-actin and myosin subfragment 1. Biochemistry 1985; 24(23):6631–6638.

    Article  PubMed  CAS  Google Scholar 

  25. Hitchcock-DeGregori SE, Song Y, Greenfield NJ. Functions of tropomyosin’s periodic repeats. Biochemistry 2002; 41(50):15036–15044.

    Article  PubMed  CAS  Google Scholar 

  26. Singh A, Hitchcock-DeGregori SE. Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin. Structure 2006; 14(1)):43–50.

    Article  PubMed  CAS  Google Scholar 

  27. Whitby FG, Kent H, Stewart F et al. Structure of tropomyosin at 9 angstroms resolution. J Mol Biol 1992; 227(2):441–452.

    Article  PubMed  CAS  Google Scholar 

  28. Whitby FG, Phillips GN Jr. Crystal structure of tropomyosin at 7 Angstroms resolution. Proteins 2000; 38(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  29. Brown JH, Zhou Z, Reshetnikova L et al. Structure of the mid-region of tropomyosin: bending and binding sites for actin. Proc Natl Acad Sci USA 2005; 102(52):18878–18883.

    Article  PubMed  CAS  Google Scholar 

  30. Greenfield NJ, Montelione GT, Farid RS et al. The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies. Biochemistry 1998; 37(21):7834–7843.

    Article  PubMed  CAS  Google Scholar 

  31. Greenfield NJ, Palm T, Hitchcock-DeGregori SE. Structure and interactions of the carboxyl terminus of striated muscle alpha-tropomyosin: it is important to be flexible. Biophys J 2002; 83(5):2754–2766.

    Article  PubMed  CAS  Google Scholar 

  32. Greenfield NJ, Huang YJ, Swapna GV et al. Solution NMR Structure of the Junction between Tropomyosin Molecules: Implications for Actin Binding and Regulation. J Mol Biol 2006, 364:80–96.

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Mui S, Brown JH et al. The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site. Proc Natl Acad Sci USA 2002; 99(11):7378–7383.

    Article  PubMed  CAS  Google Scholar 

  34. Nitanai Y, Minakata S, Maeda K et al. Crystal structures of tropomyosin: flexible coiled-coil. Adv Exp Med Biol 2007; 592:137–151.

    Article  PubMed  Google Scholar 

  35. Conway JF, Parry DA. Structural features in the heptad substructure and longer range repeats of two-stranded alpha-fibrous proteins. Int J Biol Macromol 1990; 12(5):328–334.

    Article  PubMed  CAS  Google Scholar 

  36. McLachlan AD, Stewart M. The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol 1976; 103(2):271–298.

    Article  PubMed  CAS  Google Scholar 

  37. Kwok SC, Hodges RS. Stabilizing and destabilizing clusters in the hydrophobic core of long two-stranded alpha-helical coiled-coils. J Biol Chem 2004; 279(20):21576–21588.

    Article  PubMed  CAS  Google Scholar 

  38. Singh A, Hitchcock-DeGregori SE. Local destabilization of the tropomyosin coiled coil gives the molecular flexibility required for actin binding. Biochemistry 2003; 42(48):14114–14121.

    Article  PubMed  CAS  Google Scholar 

  39. Landis C, Back N, Homsher E et al. Effects of tropomyosin internal deletions on thin filament function. J Biol Chem 1999; 274(44):31279–31285.

    Article  PubMed  CAS  Google Scholar 

  40. Hitchcock-DeGregori SE, Song Y, Moraczewska J. Importance of internal regions and the overall length of tropomyosin for actin binding and regulatory function. Biochemistry 2001; 40(7):2104–2112.

    Article  PubMed  CAS  Google Scholar 

  41. Greenfield NJ, Swapna GV, Huang Y et al. The structure of the carboxyl terminus of striated alpha-tropomyosin in solution reveals an unusual parallel arrangement of interacting alpha-helices. Biochemistry 2003; 42(3):614–619.

    Article  PubMed  CAS  Google Scholar 

  42. Phillips GN Jr, Lattman EE, Cummins P et al. Crystal structure and molecular interactions of tropomyosin. Nature 1979; 278(5703):413–417.

    Article  PubMed  CAS  Google Scholar 

  43. Johnson P, Smillie LB. Polymerizability of rabbit skeletal tropomyosin: effects of enzymic and chemical modifications. Biochemistry 1977; 16(10):2264–2269.

    Article  PubMed  CAS  Google Scholar 

  44. Cho YJ, Liu J, Hitchcock-DeGregori SE. The amino terminus of muscle tropomyosin is a major determinant for function. J Biol Chem 1990; 265(1):538–545.

    PubMed  CAS  Google Scholar 

  45. Hitchcock-DeGregori SE, Heald RW. Altered actin and troponin binding of amino-terminal variants of chicken striated muscle alpha-tropomyosin expressed in Escherichia coli. J Biol Chem 1987; 262(20):9730–9735.

    PubMed  CAS  Google Scholar 

  46. Greenfield NJ, Stafford WF, Hitchcock-DeGregori SE. The effect of N-terminal acetylation on the structure of an N-terminal tropomyosin peptide and alpha alpha-tropomyosin. Protein Sci 1994; 3(3):402–410.

    Article  PubMed  CAS  Google Scholar 

  47. Gaffin RD, Gokulan K, Sacchettini JC et al. Changes in end-to-end interactions of tropomyosin affect mouse cardiac muscle dynamics. Am J Physiol Heart Circ Physiol 2006; 291(2):H552–563.

    Article  PubMed  CAS  Google Scholar 

  48. Phillips GN Jr. Construction of an atomic model for tropomyosin and implications for interactions with actin. J Mol Biol 1986; 192(1):128–131.

    Article  PubMed  CAS  Google Scholar 

  49. Strelkov SV, Burkhard P. Analysis of alpha-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation. J Struct Biol 2002; 137(1–2):54–64.

    Article  PubMed  CAS  Google Scholar 

  50. Pirani A, Xu C, Hatch V et al, Lehman W. Single particle analysis of relaxed and activated muscle thin filaments. J Mol Biol 2005; 346(3):761–772.

    Article  PubMed  CAS  Google Scholar 

  51. Poole KJ, Lorenz M, Evans G et al. A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J Struct Biol 2006; 155(2):273–284.

    Article  PubMed  CAS  Google Scholar 

  52. Lorenz M, Poole KJ, Popp D et al. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol 1995; 246(1):108–119.

    Article  PubMed  CAS  Google Scholar 

  53. Singh A, Hitchcock-DeGregori SE. Tropomyosin’s periods are quasi-equivalent for actin binding but have specific regulatory functions. Biochemistry 2007; 46(51):14917–14927.

    Article  PubMed  CAS  Google Scholar 

  54. Gunning PW, Schevzov G, Kee AJ et al. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2005; 15(6):333–341.

    Article  PubMed  CAS  Google Scholar 

  55. Pearlstone JR, Smillie LB. Binding of troponin-T fragments to several types of tropomyosin. Sensitivity to Ca2+ in the presence of troponin-C. J Biol Chem 1982; 257(18):10587–10592.

    PubMed  CAS  Google Scholar 

  56. Cho YJ, Hitchcock-DeGregori SE. Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc Natl Acad Sci USA 1991; 88(22):10153–10157.

    Article  PubMed  CAS  Google Scholar 

  57. Hammell RL, Hitchcock-DeGregori SE. The sequence of the alternatively spliced sixth exon of alpha-tropomyosin is critical for cooperative actin binding but not for interaction with troponin. J Biol Chem 1997; 272(36):22409–22416.

    Article  PubMed  CAS  Google Scholar 

  58. Kostyukova AS, Hitchcock-Degregori SE, Greenfield NJ. Molecular Basis of Tropomyosin Binding to Tropomodulin, an Actin-capping Protein. J Mol Biol 2007; 372(3):608–618.

    Article  PubMed  CAS  Google Scholar 

  59. Kwok SC, Hodges RS. Clustering of large hydrophobes in the hydrophobic core of two-stranded alpha-helical coiled-coils controls protein folding and stability. J Biol Chem 2003; 278(37):35248–35254.

    Article  PubMed  CAS  Google Scholar 

  60. Greenfield NJ, Huang YJ, Palm T et al. Solution NMR structure and folding dynamics of the N terminus of a rat nonmuscle alpha-tropomyosin in an engineered chimeric protein. J Mol Biol 2001; 312(4):833–847.

    Article  PubMed  CAS  Google Scholar 

  61. Pittenger MF, Helfman DM. In vitro and in vivo characterization of four fibroblast tropomyosins produced in bacteria: TM-2, TM-3, TM-5a and TM-5b are colocalized in interphase fibroblasts. J Cell Biol 1992; 118(4):841–858.

    Article  PubMed  CAS  Google Scholar 

  62. Moraczewska J, Nicholson-Flynn K, Hitchcock-DeGregori SE. The ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding to F-actin in the open state. Biochemistry 1999; 38(48):15885–15892.

    Article  PubMed  CAS  Google Scholar 

  63. Kostyukova AS, Hitchcock-DeGregori SE, Greenfield NJ. Molecular basis of tropomyosin binding to tropomodulin, an actin-capping protien. J Mol Biol. 2007. 372(3);608–611.

    Article  PubMed  CAS  Google Scholar 

  64. Mason JM, Arndt KM. Coiled coil domains: stability, specificity and biological implications. Chembiochem 2004; 5(2):170–176.

    Article  PubMed  CAS  Google Scholar 

  65. Xu C, Craig R, Tobacman L, Horowitz R et al. Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys J 1999; 77(2):985–992.

    Article  PubMed  CAS  Google Scholar 

  66. Hitchcock-DeGregori SE, Greenfield NJ, Singh A. Tropomyosin: regulator of actin filaments. Adv Exp Med Biol 2007; 592:87–97.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hitchcock-DeGregori, S.E. (2008). Tropomyosin: Function Follows Structure. In: Gunning, P. (eds) Tropomyosin. Advances in Experimental Medicine and Biology, vol 644. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85766-4_5

Download citation

Publish with us

Policies and ethics