Skip to main content

Tropomyosin: Regulator of Actin Filaments

  • Conference paper
Regulatory Mechanisms of Striated Muscle Contraction

Abstract

Cellular movement and function have long been known to depend on the actin cytoskeleton and its regulation. The actin cytoskeleton is the ultimate target of numerous cellular signaling pathways. The first signaling system understood in any detail was that of vertebrate skeletal muscle. Setsuro Ebashi, celebrated by this volume, was a pioneer through his role in showing that the calcium ion is the physiological regulator of muscle contraction followed by his landmark discovery and naming of troponin as the calcium ion receptor that regulates contraction through its interaction with tropomyosin and actin. Early work in the field is summarized in his remarkable 1968 review with M. Endo (Ebashi and Endo, 1968). There they put forth the evidence for a pathway by which activation of the muscle by an action potential would ultimately result in a contractile response consequent to the binding of calcium ion released from the sarcoplasmic reticulum to troponin bound to tropomyosin on the actin filament. The concept of a signaling cascade is now central to any thinking about signaling pathways as we attempt to understand such mechanisms at the molecular level. Whereas troponin is found only in striated muscles, tropomyosin is expressed in virtually all eucaryotic cells and is recognized to be a universal actin filament regulator, versatile in its function despite its deceptively simple coiled coil structure. In this chapter we give an overview of tropomyosin’s multiple regulatory roles and insights into aspects of the structural basis for its functions, focusing on vertebrate forms. As such, this is a personal view rather than a comprehensive review that can be found elsewhere (Perry, 2001; Gunning et al., 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.8. References

  • Bamburg, J. R., 1999, Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15:185–230.

    Article  PubMed  CAS  Google Scholar 

  • Bharadwaj, S., Shah, V., Tariq, F., Damartoski, B., and Prasad, G. L., 2005, Amino terminal, but not the carboxy terminal, sequences of tropomyosin-1 are essential for the induction of stress fiber assembly in neoplastic cells. Cancer Lett. 229:253–260.

    Article  PubMed  CAS  Google Scholar 

  • Blanchoin, L., Pollard, T. D., and Hitchcock-DeGregori, S. E., 2001, Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr. Biol. 11:1300–1304.

    Article  PubMed  CAS  Google Scholar 

  • Braverman, R. H., Cooper, H. L., Lee, H. S., and Prasad, G. L., 1996, Anti-oncogenic effects of tropomyosin: isoform specificity and importance of protein coding sequences. Oncogene 13:537–545.

    PubMed  CAS  Google Scholar 

  • Bremel, R. D., and Weber, A., 1972, Cooperation within actin filament in vertebrate skeletal muscle. Nat. New Biol. 238:97–101.

    PubMed  CAS  Google Scholar 

  • Broschat, K. O., 1990, Tropomyosin prevents depolymerization of actin filaments from the pointed end. J. Biol. Chem. 265:21323–21329.

    PubMed  CAS  Google Scholar 

  • Brown, J. H., Kim, K. H., Jun, G., Greenfield, N. J., Dominguez, R., Volkmann, N., Hitchcock-DeGregori, S. E., and Cohen, C., 2001, Deciphering the design of the tropomyosin molecule. Proc. Natl. Acad. Sci. USA 98:8496–8501.

    Article  PubMed  CAS  Google Scholar 

  • Bryce, N. S., Schevzov, G., Ferguson, V., Percival, J. M., Lin, J. J., Matsumura, F., Bamburg, J. R., Jeffrey, P. L., Hardeman, E. C., Gunning, P., and Weinberger, R. P., 2003, Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol. Biol. Cell 14:1002–1016.

    Article  PubMed  CAS  Google Scholar 

  • Butters, C. A., Willadsen, K. A., and Tobacman, L. S., 1993, Cooperative interactions between adjacent troponin-tropomyosin complexes may be transmitted through the actin filament. J. Biol. Chem. 268:15565–15570.

    PubMed  CAS  Google Scholar 

  • Cassell, M., and Tobacman, L. S., 1996, Opposite effects of myosin subfragment 1 on binding of cardiac troponin and tropomyosin to the thin filament. J. Biol. Chem. 271:12867–12872.

    Article  PubMed  CAS  Google Scholar 

  • Cho, Y. J., Liu, J., and Hitchcock-DeGregori, S. E., 1990, The amino terminus of muscle tropomyosin is a major determinant for function. J. Biol. Chem. 265:538–545.

    PubMed  CAS  Google Scholar 

  • Cooper, H. L., Feuerstein, N., Noda, M., and Bassin, R. H., 1985, Suppression of tropomyosin synthesis, a common biochemical feature of oncogenesis by structurally diverse retroviral oncogenes. Mol. Cell. Biol. 5:972–983.

    PubMed  CAS  Google Scholar 

  • DesMarais, V., Ichetovkin, I., Condeelis, J., and Hitchcock-DeGregori, S. E., 2002, Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J. Cell Sci. 115:4649–4660.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, B. L., 1976, Tropomyosin binding to F-actin induced by myosin heads. Science 192:1337–1339.

    Article  PubMed  CAS  Google Scholar 

  • Ebashi, S., and Endo, M., 1968, Calcium Ion and Muscle Contraction. Prog. Biophys. Mol. Biol. 18:125–183.

    Google Scholar 

  • Flicker, P. F., Phillips, G. N., Jr., and Cohen, C., 1982, Troponin and its interactions with tropomyosin. An electron microscope study. J. Mol. Biol. 162:495–501.

    Article  PubMed  CAS  Google Scholar 

  • Fujime, S., and Ishiwata, S., 1971, Dynamic study of F-actin by quasielastic scattering of laser light. J. Mol. Biol. 62:251–265.

    Article  PubMed  CAS  Google Scholar 

  • Geeves, M. A., and Lehrer, S. S., 1994, Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys. J. 67:273–282.

    PubMed  CAS  Google Scholar 

  • Gimona, M., Kazzaz, J. A., and Helfman, D. M., 1996, Forced expression of tropomyosin 2 or 3 in v-Kiras-transformed fibroblasts results in distinct phenotypic effects. Proc. Natl. Acad. Sci. USA 93:9618–9623.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A. M., Homsher, E., and Regnier, M., 2000, Regulation of contraction in striated muscle. Physiol. Rev. 80:853–924.

    PubMed  CAS  Google Scholar 

  • Greenfield, N. J., Montelione, G. T., Farid, R. S., and Hitchcock-DeGregori, S. E., 1998, The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies. Biochemistry 37:7834–7843.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, N. J., Palm, T., and Hitchcock-DeGregori, S. E., 2002, Structure and interactions of the carboxyl terminus of striated muscle α-tropomyosin: It is important to be flexible. Biophys. J. 83:2754–2766.

    PubMed  CAS  Google Scholar 

  • Greenfield, N. J., Swapna, G. V., Huang, Y., Palm, T., Graboski, S., Montelione, G. T., and Hitchcock-DeGregori, S. E., 2003, The structure of the carboxyl terminus of striated alpha-tropomyosin in solution reveals an unusual parallel arrangement of interacting alpha-helices. Biochemistry 42:614–619.

    Article  PubMed  CAS  Google Scholar 

  • Gunning, P. W., Schevzov, G., Kee, A. J., and Hardeman, E. C., 2005, Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol. 15:333–341.

    Article  PubMed  CAS  Google Scholar 

  • Gupton, S. L., Anderson, K. L., Kole, T. P., Fischer, R. S., Ponti, A., Hitchcock-DeGregori, S. E., Danuser, G., Fowler, V. M., Wirtz, D., Hanein, D., and Waterman-Storer, C. M., 2005, Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell. Biol. 168:619–631.

    Article  PubMed  CAS  Google Scholar 

  • Hammell, R. L., and Hitchcock-DeGregori, S. E., 1996, Mapping the functional domains within the carboxyl terminus of alpha-tropomyosin encoded by the alternatively spliced ninth exon. J. Biol. Chem. 271:4236–4242.

    Article  PubMed  CAS  Google Scholar 

  • Hammell, R. L., and Hitchcock-DeGregori, S. E., 1997, The sequence of the alternatively spliced sixth exon of alpha-tropomyosin is critical for cooperative actin binding but not for interaction with troponin. J. Biol. Chem. 272:22409–22416.

    Article  PubMed  CAS  Google Scholar 

  • Heald, R. W., and Hitchcock-DeGregori, S. E., 1988, The structure of the amino terminus of tropomyosin is critical for binding to actin in the absence and presence of troponin. J. Biol. Chem. 263:5254–5259.

    PubMed  CAS  Google Scholar 

  • Heeley, D. H., Smillie, L. B., and Lohmeier-Vogel, E. M., 1989, Effects of deletion of tropomyosin overlap on regulated actomyosin subfragment 1 ATPase. Biochem. J. 258:831–836.

    PubMed  CAS  Google Scholar 

  • Hendricks, M., and Weintraub, H., 1981, Tropomyosin is decreased in transformed cells. Proc. Natl. Acad. Sci. USA 78:5633–5637.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, S. E., Carisson, L., and Lindberg, U., 1976, Depolymerization of F-actin by deoxyribonuclease I. Cell 7:531–542.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock-DeGregori, S. E., and An, Y., 1996, Integral repeats and a continuous coiled coil are required for binding of striated muscle tropomyosin to the regulated actin filament. J. Biol. Chem. 271:3600–3603.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock-DeGregori, S. E., Lewis, S. F., and Mistrik, M., 1988, Lysine reactivities of tropomyosin complexed with troponin. Arch. Biochem. Biophys. 264:410–416.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock-DeGregori, S. E., Song, Y., and Greenfield, N. J., 2002, Functions of tropomyosin’s periodic repeats. Biochemistry 41:15036–15044.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock-DeGregori, S. E., Song, Y., and Moraczewska, J., 2001, Importance of internal regions and the overall length of tropomyosin for actin binding and regulatory function. Biochemistry 40:2104–2112.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock-DeGregori, S. E., and Varnell, T. A., 1990, Tropomyosin has discrete actin-binding sites with sevenfold and fourteenfold periodicities. J. Mol. Biol. 214:885–896.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, Y., and Lehrer, S. S., 1990, Excimer fluorescence of pyrenyliodoacetamide-labeled tropomyosin: a probe of the state of tropomyosin in reconstituted muscle thin filaments. Biochemistry 29:1160–1166.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, R., Yamashiro, S., and Matsumura, F., 1989, Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J. Biol. Chem. 264:7490–7497.

    PubMed  CAS  Google Scholar 

  • Johnson, P., and Smillie, L. B., 1977, Polymerizability of rabbit skeletal tropomyosin: effects of enzymic and chemical modifications. Biochemistry 16:2264–2269.

    Article  PubMed  CAS  Google Scholar 

  • Kostyukova, A. S., and Hitchcock-DeGregori, S. E., 2004, Effect of the structure of the N terminus of tropomyosin on tropomodulin function. J. Biol. Chem. 279:5066–5071.

    Article  PubMed  CAS  Google Scholar 

  • Kwok, S. C., and Hodges, R. S., 2004, Stabilizing and destabilizing clusters in the hydrophobic core of long two-stranded alpha-helical coiled-coils. J. Biol. Chem. 279:21576–21588.

    Article  PubMed  CAS  Google Scholar 

  • Landis, C., Back, N., Homsher, E., and Tobacman, L. S., 1999, Effects of tropomyosin internal deletions on thin filament function. J. Biol. Chem. 274:31279–31285.

    Article  PubMed  CAS  Google Scholar 

  • Landis, C. A., Bobkova, A., Homsher, E., and Tobacman, L. S., 1997, The active state of the thin filament is destabilized by an internal deletion in tropomyosin. J. Biol. Chem. 272:14051–14056.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Mui, S., Brown, J. H., Strand, J., Reshetnikova, L., Tobacman, L. S., and Cohen, C., 2002, The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site. Proc. Natl. Acad. Sci. USA 99:7378–7383.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J. J., Hegmann, T. E., and Lin, J. L., 1988, Differential localization of tropomyosin isoforms in cultured nonmuscle cells. J. Cell. Biol. 107:563–572.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1976, The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J. Mol. Biol. 103:271–298.

    Article  PubMed  CAS  Google Scholar 

  • Mahadev, K., Raval, G., Bharadwaj, S., Willingham, M. C., Lange, E. M., Vonderhaar, B., Salomon, D., and Prasad, G. L., 2002, Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp. Cell Res. 279:40–51.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F., Lin, J. J., Yamashiro-Matsumura, S., Thomas, G. P., and Topp, W. C. (1983a). Differential expression of tropomyosin forms in the microfilaments isolated from normal and transformed rat cultured cells. J. Biol. Chem. 258:13954–13964.

    PubMed  CAS  Google Scholar 

  • Matsumura, F., Yamashiro-Matsumura, S., and Lin, J. J. (1983b). Isolation and characterization of tropomyosin-containing microfilaments from cultured cells. J. Biol. Chem. 258:6636–6644.

    PubMed  CAS  Google Scholar 

  • Monteiro, P. B., Lataro, R. C., Ferro, J. A., and Reinach, F. C., 1994, Functional alpha tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino-terminal acetyl group. J. Biol. Chem. 269.

    Google Scholar 

  • Moraczewska, J., and Hitchcock-DeGregori, S. E., 2000, Independent functions for the N-and C-termini in the overlap region of tropomyosin. Biochemistry 39:6891–6897.

    Article  PubMed  CAS  Google Scholar 

  • Pan, B. S., Gordon, A. M., and Luo, Z. X., 1989, Removal of tropomyosin overlap modifies cooperative binding of myosin S-1 to reconstituted thin filaments of rabbit striated muscle. J. Biol. Chem. 264:8495–8498.

    PubMed  CAS  Google Scholar 

  • Percival, J. M., Hughes, J. A., Brown, D. L., Schevzov, G., Heimann, K., Vrhovski, B., Bryce, N., Stow, J. L., and Gunning, P. W., 2004, Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol. Biol. Cell 15:268–280.

    Article  PubMed  CAS  Google Scholar 

  • Perry, S. V., 2001, Vertebrate tropomyosin: distribution, properties and function. J. Muscle Res. Cell Motil. 22:5–49.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, G. N., Jr., 1986, Construction of an atomic model for tropomyosin and implications for interactions with actin. J. Mol. Biol. 192:128–131.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T. D., and Borisy, G. G., 2003, Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465.

    Article  PubMed  CAS  Google Scholar 

  • Raval, G. N., Bharadwaj, S., Levine, E. A., Willingham, M. C., Geary, R. L., Kute, T., and Prasad, G. L., 2003, Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 22:6194–6203.

    Article  PubMed  CAS  Google Scholar 

  • Singh, A., and Hitchcock-DeGregori, S. E., 2006, Dual requirement for flexibility and specificity for binding of the coiled coil tropomyosin to its target, actin. Structure, 14:43–50.

    Article  PubMed  CAS  Google Scholar 

  • Tang, N., and Ostap, E. M., 2001, Motor domain-dependent localization of myo1b (myr-1). Curr. Biol. 11:1131–1135.

    Article  PubMed  CAS  Google Scholar 

  • Tobacman, L. S., and Butters, C. A., 2000, A new model of cooperative myosin-thin filament binding [In Process Citation]. J. Biol. Chem. 275:27587–27593.

    PubMed  CAS  Google Scholar 

  • Ueno, H., Tawada, Y., and Ooi, T., 1976, Properties of non-polymerizable tropomyosin obtained by carboxypeptidase A digestion. J. Biochem. (Tokyo) 80:283–290.

    PubMed  CAS  Google Scholar 

  • Urbancikova, M., and Hitchcock-DeGregori, S. E., 1994, Requirement of amino-terminal modification for striated muscle alpha-tropomyosin function. J. Biol. Chem. 269:24310–24315.

    PubMed  CAS  Google Scholar 

  • Walsh, T. P., Trueblood, C. E., Evans, R., and Weber, A., 1985, Removal of tropomyosin overlap and the co-operative response to increasing calcium concentrations of the acto-subfragment-1 ATPase. J. Mol. Biol. 182:265–269.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. L., 2001, Caldesmon and smooth-muscle regulation. Cell Biochem. Biophys. 35:275–88.

    Article  PubMed  CAS  Google Scholar 

  • Whitby, F. G., and Phillips, G. N., Jr., 2000, Crystal structure of tropomyosin at 7 Angstroms resolution. Proteins 38:49–59.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Craig, R., Tobacman, L., Horowitz, R., and Lehman, W., 1999, Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys. J. 77:985–992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Hitchcock-DeGregori, S.E., Greenfield, N.J., Singh, A. (2007). Tropomyosin: Regulator of Actin Filaments. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_9

Download citation

Publish with us

Policies and ethics