Skip to main content

Variational Approach to Complicated Similarity Solutions of Higher Order Nonlinear Evolution Partial Differential Equations

  • Chapter
Sobolev Spaces in Mathematics II

Part of the book series: International Mathematical Series ((IMAT,volume 9))

Abstract

We consider the Cauchy problem for three higher order degenerate quasilinear partial differential equations, as basic models,

$$\eqalign{ & u_t {\rm{ = ( - 1)}}^{m{\rm{ + 1}}} \Delta ^m {\rm{(|}}u{\rm{|}}^n u{\rm{) + |}}u{\rm{|}}^n u{\rm{,}} \cr & u_{tt} {\rm{ = ( - 1)}}^{m{\rm{ + 1}}} \Delta ^m {\rm{(|}}u{\rm{|}}^n u{\rm{) + |}}u{\rm{|}}^n u{\rm{,}} \cr & u_t {\rm{ = ( - 1)}}^{m{\rm{ + 1}}} \left[ {\Delta ^m {\rm{(|}}u{\rm{|}}^n u{\rm{)}}} \right]x_1 {\rm{ + }}\left( {{\rm{|}}u{\rm{|}}^n u} \right)x_1 \cr}$$

where (x,t) ϵ RN × R+, n > 0, and Δ m is the (m ≥ 1)th iteration of the Laplacian. Based on the blow-up similarity and travelling wave solutions, we investigate general local, global, and blow-up properties of such equations. The nonexistence of global in time solutions is established by different methods. In particular, for m = 2 and m = 3 such similarity patterns lead to the semilinear 4th and 6th order elliptic partial differential equations with noncoercive operators and non-Lipschitz nonlinearities

$${\rm{ - }}\Delta ^{\rm{2}} F{\rm{ + }}F{\rm{ - |}}F{\rm| }^{\rm - {n \over {n{\rm{ + 1}}}}}{\rm{ }}F{\rm{ = 0\ and\ }}\Delta ^{\rm{3}} F{\rm{ + }}F{\rm{ - |}}F{\rm |}^{\rm - {n \over {n{\rm{ + 1}}}}}{\rm{ }}F{\rm{ = 0\ in\ R}}^N$$
((1))

which were not addressed in the mathematical literature. Using analytic variational, qualitative, and numerical methods, we prove that Eqs. (1) admit an infinite at least countable set of countable families of compactly supported solutions that are oscillatory near finite interfaces. This shows typical properties of a set of solutions of chaotic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahri, A., Berestycki, H.: A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. ,267, 1–32 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bahri, A., Lions, P.L.: Morse index in some min—max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41, no. 8, 1027–1037 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berger, M.: Nonlinearity and Functional Analysis. Acad. Press, New York (1977)

    MATH  Google Scholar 

  4. Boggio, T.: Sull'equilibrio delle piastre elastiche incastrate. Rend. Acc. Lincei 10, 197–205 (1901)

    Google Scholar 

  5. Boggio, T.: Sulle funzioni di Green d'ordine m. Rend. Circ. Mat. Palermo 20, 97–135 (1905)

    Article  MATH  Google Scholar 

  6. Brezis, H., Brawder, F.: Partial Differential Equations in the 20th Century. Adv. Math.,135, 76–144 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clark, D.C.: A variant of Lusternik—Schnirelman theory. Indiana Univ. Math. J. 22,65–74 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coddington, E.A.: Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, Inc., New York—London (1955)

    MATH  Google Scholar 

  9. Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin—Tokyo (1985)

    MATH  Google Scholar 

  10. Evans, J.D., Galaktionov, V.A., King, J.R.: Source-type solutions of the fourth order unstable thin film equation. Euro J. Appl. Math. 18, 273–321 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans, J.D., Galaktionov, V.A., King, J.R.: Unstable sixth order thin film equation.I. Blow-up similarity solutions; II. Global similarity patterns. Nonlinearity 20, 1799–1841, 1843–1881 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Galaktionov, V.A.: On interfaces and oscillatory solutions of higher order semilinear parabolic equations with nonlipschitz nonlinearities. Stud. Appl. Math. 117, 353–389 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Galaktionov, V.A., Harwin, P.J.: Non-uniqueness and global similarity solutions for a higher order semilinear parabolic equation. Nonlinearity 18, 717–746 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Galaktionov, V.A., Pohozaev (Pokhozhaev), S.I.: On shock, rarefaction waves, and compactons for odd order nonlinear dispersion PDEs. Comput. Math. Math. Phys.[To appear]

    Google Scholar 

  15. Galaktionov, V.A., Svirshchevskii, S.R.: Exact Solutions and Invariant Sub-spaces of Nonlinear Partial Differential Equations in Mechanics and Physics.Chapman & Hall/CRC, Boca Raton, Florida (2007)

    Google Scholar 

  16. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Am. Math. Soc., Providence,RI (1988)

    Google Scholar 

  17. Kalies, W.D., Kwapisz, J., VandenBerg, J.B., VanderVorst, R.C.A.M.: Homotopy classes for stable periodic and chaotic patterns in fourth order Hamiltonian systems.Commun. Math. Phys. 214, 573–592 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kawamoto, S.: An exact transformation from the Harry Dym equation to the modified KdV equation. J. Phys. Soc. Japan 54, 2055–2056 (1985)

    Article  MathSciNet  Google Scholar 

  19. Krasnosel'skii, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, Oxford—Paris (1964)

    Google Scholar 

  20. Krasnosel'skii, M. A., Zabreiko, P.P.: Geometrical Methods of Nonlinear Analysis.Springer-Verlag, Berlin—Tokyo (1984)

    Google Scholar 

  21. Lions, J.L.: Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires. Dunod, Gauthier—Villars, Paris (1969)

    MATH  Google Scholar 

  22. Maz'ya, V.G.: Sobolev Spaces. Springer-Verlag, Berlin—Tokyo (1985)

    Google Scholar 

  23. Mitidieri, E., Pohozaev (Pokhozhaev), S.I.: Apriori Estimates and Blow-up of Solutions to Nonlinear Partial Differential Equations and Inequalities. Proc. Steklov Inst. Math.234, Intern. Acad. Publ. Comp. Nauka/Interperiodica, Moscow (2001)

    Google Scholar 

  24. Peletier, L.A., Troy, W.C.: Spatial Patterns: Higher Order Models in Physics and Mechanics. Birkhäuser, Boston—Berlin (2001)

    MATH  Google Scholar 

  25. Pohozaev (Pokhozhaev), S.I.: On an approach to nonlinear equations. Sov. Math.,Dokl. 20, 912–916 (1979)

    MATH  Google Scholar 

  26. Pohozaev (Pokhozhaev), S.I.: The fibering method in nonlinear variational problems.Pitman Research Notes in Math. 365, 35–88 (1997)

    Google Scholar 

  27. Rabinowitz, P.: Variational methods for nonlinear eigenvalue problems. In: Eigenvalue of Nonlinear Problems, pp. 141–195. Edizioni Cremonese, Rome (1974)

    Google Scholar 

  28. Rosenau, P.: Nonlinear dispertion and compact structures. Phys. Rev. Lett. 73, 1737–1741 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rosenau, P.: On solitons, compactons, and Lagrange maps. Phys. Lett. A 211, 265–275(1996)

    Article  MathSciNet  Google Scholar 

  30. Rosenau, P.: Compact and noncompact dispersive patterns. Phys. Lett. A, 275, 193–203 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelength. Phys. Rev.Lett. 7., 564–567 (1993)

    Article  Google Scholar 

  32. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-up in Quasilinear Parabolic Equations. Walter de Gruyter, Berlin—New York (1995)

    MATH  Google Scholar 

  33. Samarskii, A.A., Zmitrenko, N.V., Kurdyumov, S.P., Mikhailov, A.P.: Thermal structures and fundamental length in a medium with nonlinear heat conduction and volumetric heat sources. Sov. Phys., Dokl. 21, 141–143 (1976)

    Google Scholar 

  34. Shishkov, A.E.: Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order. Sbornik: Math.190, 1843–1869 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sobolev, S.L.: Some Applications of Functional Analysis in Mathematical Physics (Russian). 1st ed. Leningrad State Univ., Leningrad (1950); 3rd ed. Nauka, Moscow (1988); English transl. of the 1st Ed.: Am. Math. Soc., Providence, RI (1963); English transl. of the 3rd Ed. with comments by V. P. Palamodov: Am. Math. Soc., Providence, RI (1991)

    Google Scholar 

  36. Van Den Berg J.B., Vandervorst, R.C.: Stable patterns for fourth order parabolic equations. Duke Math. J. 115, 513–558 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Galaktionov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Galaktionov, V., Mitidieri, E., Pokhozhaev, S. (2009). Variational Approach to Complicated Similarity Solutions of Higher Order Nonlinear Evolution Partial Differential Equations. In: Maz'ya, V. (eds) Sobolev Spaces in Mathematics II. International Mathematical Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85650-6_8

Download citation

Publish with us

Policies and ethics