Skip to main content

Biological Activity of Defence-Related Plant Secondary Metabolites

  • Chapter
  • First Online:
Plant-derived Natural Products

Abstract

Althought is accepted that secondary metabolites and natural products in plants are involved in diverse activities, the function of most of the thousands of phenolics, quinones, terpenes, flavonoids and other low molecular weight meta­bolites remains unknown. The best understood secondary metabolites are implicated in defence against pathogens, with the mode of action of some of these established. Interestingly, to date, a relatively small number of processes have been shown to be the targets of plant metabolites and these include electron transport chains, mitochondrial function and membrane integrity. It is now emerging, however, that other specific enzymes and processes may also be the targets of particular metabolites. There is a general hope that modern genomic approaches will identify new targets and modes of action of plant metabolites. Molecules, especially triterpenoids, that trigger apoptosis or autophagy in tumour cells are of particular interest in this regard. When considering the approaches taken in plant science hitherto, and the strategies that have yielded success in the biomedical ­sector, we discuss whether there is a case to be made for carrying out initial studies on mode of action in a genetically tractable system like the yeast Saccharomyces cerevisiae, before moving to specific studies in plant or human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts, A.M., Francois, I.E., Meert, E.M., Li, Q.T., Cammue, B.P., and Thevissen, K. (2007) The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13:243–247.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama, K., and Hayashi, H. (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot (Lond) 97:925–931.

    Article  CAS  Google Scholar 

  • Akiyama, K., Matsuzaki, K., and Hayashi, H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827.

    Article  PubMed  CAS  Google Scholar 

  • Armah, C.N., Mackie, A.R., Roy, C., Price, K., Osbourn, A.E., Bowyer, P., and Ladha, S. (1999) The membrane-permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophys J 76:281–290.

    Article  PubMed  CAS  Google Scholar 

  • Baerson, S.R., Sanchez-Moreiras, A., Pedrol-Bonjoch, N., Schulz, M., Kagan, I.A., Agarwal, A.K., et al. (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J Biol Chem 280:21867–21881.

    Article  PubMed  CAS  Google Scholar 

  • Bais, H.P., Walker, T.S., Stermitz, F.R., Hufbauer, R.A., and Vivanco, J.M. (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (+/-)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:1173–1179.

    Article  PubMed  CAS  Google Scholar 

  • Bais, H.P., Walker, T.S., Kennan, A.J., Stermitz, F.R., and Vivanco, J.M. (2003a) Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots. J Agric Food Chem 51:897–901.

    Article  CAS  Google Scholar 

  • Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M., and Vivanco, J.M. (2003b) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380.

    Article  CAS  Google Scholar 

  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266.

    Article  PubMed  CAS  Google Scholar 

  • Baker, D.D., Chu, M., Oza, U., and Rajgarhia, V. (2007) The value of natural products to future pharmaceutical discovery. Nat Prod Rep 24:1225–1244.

    Article  PubMed  CAS  Google Scholar 

  • Balunas, M.J., and Kinghorn, A.D. (2005) Drug discovery from medicinal plants. Life Sci 78:431–441.

    Article  PubMed  CAS  Google Scholar 

  • Bouarab, K., Melton, R., Peart, J., Baulcombe, D., and Osbourn, A. (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892.

    Article  PubMed  CAS  Google Scholar 

  • Buck, C.B. (2008) Defensins’ offensive play: exploiting a viral achilles’ heel. Cell Host Microbe 3:3–4.

    Article  PubMed  CAS  Google Scholar 

  • Cabral, K.M., Almeida, M.S., Valente, A.P., Almeida, F.C., and Kurtenbach, E. (2003) Production of the active antifungal Pisum sativum defensin 1 (Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease. Protein Expr Purif 31:115–122.

    Article  PubMed  CAS  Google Scholar 

  • Codogno, P., and Meijer, A.J. (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12 Suppl 2:1509–1518.

    Article  PubMed  CAS  Google Scholar 

  • Cole, D., Pallet, K., and Rodgers, M. (2000) Discovering new modes of action for herbicides and the impact of genomics. Pesticide Outlook 11:223–229.

    Article  CAS  Google Scholar 

  • D’Auria, J.C., and Gershenzon, J. (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316.

    Article  PubMed  Google Scholar 

  • Eckstein-Ludwig, U., Webb, R.J., Van Goethem, I.D., East, J.M., Lee, A.G., Kimura, M., et al. (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961.

    Article  PubMed  CAS  Google Scholar 

  • Ellington, A.A., Berhow, M.A., and Singletary, K.W. (2006) Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 27:298–306.

    Article  PubMed  CAS  Google Scholar 

  • Field, B., Jordan, F., and Osbourn, A. (2006) First encounters - deployment of defence-related natural products by plants. New Phytol 172:193–207.

    Article  PubMed  CAS  Google Scholar 

  • Francois, I.E., Aerts, A.M., Cammue, B.P., and Thevissen, K. (2005) Currently used antimycotics: spectrum, mode of action and resistance occurrence. Curr Drug Targets 6:895–907.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M. (2002) Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem 50:5751–5780.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M. (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem 54:8655–8681.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M. (2007) Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 51:116–134.

    Article  PubMed  CAS  Google Scholar 

  • Golenser, J., Waknine, J.H., Krugliak, M., Hunt, N.H., and Grau, G.E. (2006) Current perspectives on the mechanism of action of artemisinins. Int J Parasitol 36:1427–1441.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pages, V., Dun, E.A., Pillot, J.P., et al. (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Gutterman, J.U., Lai, H.T., Yang, P., Haridas, V., Gaikwad, A., and Marcus, S. (2005) Effects of the tumor inhibitory triterpenoid avicin G on cell integrity, cytokinesis, and protein ubiquitination in fission yeast. Proc Natl Acad Sci U S A 102:12771–12776.

    Article  PubMed  CAS  Google Scholar 

  • Hale, J.D., and Hancock, R.E. (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959.

    Article  PubMed  CAS  Google Scholar 

  • Halkier, B.A., and Gershenzon, J. (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333.

    Article  PubMed  CAS  Google Scholar 

  • Haridas, V., Li, X., Mizumachi, T., Higuchi, M., Lemeshko, V.V., Colombini, M., and Gutterman, J.U. (2007) Avicins, a novel plant-derived metabolite lowers energy metabolism in tumor cells by targeting the outer mitochondrial membrane. Mitochondrion 7:234–240.

    Article  PubMed  CAS  Google Scholar 

  • Haridas, V., Higuchi, M., Jayatilake, G.S., Bailey, D., Mujoo, K., Blake, M.E., et al. (2001) Avicins: triterpenoid saponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. Proc Natl Acad Sci U S A 98:5821–5826.

    Article  PubMed  CAS  Google Scholar 

  • Huang, P.R., Yeh, Y.M., and Wang, T.C. (2005) Potent inhibition of human telomerase by helenalin. Cancer Lett 227:169–174.

    Article  PubMed  CAS  Google Scholar 

  • Ito, S., Ihara, T., Tamura, H., Tanaka, S., Ikeda, T., Kajihara, H., et al. (2007) alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581:3217–3222.

    Article  PubMed  CAS  Google Scholar 

  • Iwashina, T. (2003) Flavonoid function and activity to plants and other organisms. Biol Sci Space 17:24–44.

    Article  PubMed  Google Scholar 

  • Kartal, M. (2007) Intellectual property protection in the natural product drug discovery, traditional herbal medicine and herbal medicinal products. Phytother Res 21:113–119.

    Article  PubMed  Google Scholar 

  • Kennedy, J., Marchesi, J.R., and Dobson, A.D. (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75:11–20.

    Article  PubMed  CAS  Google Scholar 

  • Klee, H. (2008) Plant biology: Hormones branch out. Nature 455:176–177.

    Article  PubMed  CAS  Google Scholar 

  • Konig, G.M., Kehraus, S., Seibert, S.F., Abdel-Lateff, A., and Muller, D. (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7:229–238.

    Article  PubMed  Google Scholar 

  • Korpan, Y.I., Nazarenko, E.A., Skryshevskaya, I.V., Martelet, C., Jaffrezic-Renault, N., and El’skaya, A.V. (2004) Potato glycoalkaloids: true safety or false sense of security? Trends Biotechnol 22:147–151.

    Article  PubMed  CAS  Google Scholar 

  • Krishna, S., Woodrow, C.J., Staines, H.M., Haynes, R.K., and Mercereau-Puijalon, O. (2006) Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol Med 12:200–205.

    Article  PubMed  CAS  Google Scholar 

  • Krungkrai, J. (2004) The multiple roles of the mitochondrion of the malarial parasite. Parasitology 129:511–524.

    Article  PubMed  CAS  Google Scholar 

  • Krungkrai, J., Burat, D., Kudan, S., Krungkrai, S., and Prapunwattana, P. (1999) Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health 30:636–642.

    PubMed  CAS  Google Scholar 

  • Landon, C., Pajon, A., Vovelle, F., and Sodano, P. (2000) The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs-AFP2, a plant antifungal protein. J Pept Res 56:231–238.

    Article  PubMed  CAS  Google Scholar 

  • Lemeshko, V.V., Haridas, V., Quijano Perez, J.C., and Gutterman, J.U. (2006) Avicins, natural anticancer saponins, permeabilize mitochondrial membranes. Arch Biochem Biophys 454:114–122.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Mo, W., Shen, D., Sun, L., Wang, J., Lu, S., et al. (2005a) Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet 1:e36.

    Article  Google Scholar 

  • Li, X.X., Davis, B., Haridas, V., Gutterman, J.U., and Colombini, M. (2005b) Proapoptotic triterpene electrophiles (avicins) form channels in membranes: cholesterol dependence. Biophys J 88:2577–2584.

    Article  CAS  Google Scholar 

  • Macias, F.A., Molinillo, J.M., Varela, R.M., and Galindo, J.C. (2007) Allelopathy - a natural alternative for weed control. Pest Manag Sci 63:327–348.

    Article  PubMed  CAS  Google Scholar 

  • Madden, L.V., and Wheelis, M. (2003) The threat of plant pathogens as weapons against U.S. crops. Annu Rev Phytopathol 41:155–176.

    Article  PubMed  CAS  Google Scholar 

  • Maor, R., and Shirasu, K. (2005) The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol 8:399–404.

    Article  PubMed  CAS  Google Scholar 

  • Meazza, G., Scheffler, B.E., Tellez, M.R., Rimando, A.M., Romagni, J.G., Duke, S.O., et al. (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60:281–288.

    Article  PubMed  CAS  Google Scholar 

  • Morre, D.J., Grieco, P.A., and Morre, D.M. (1998) Mode of action of the anticancer quassinoids - inhibition of the plasma membrane NADH oxidase. Life Sci 63:595–604.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey, J.P., and Osbourn, A.E. (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724.

    PubMed  CAS  Google Scholar 

  • Mujoo, K., Haridas, V., Hoffmann, J.J., Wachter, G.A., Hutter, L.K., Lu, Y., et al. (2001) Triterpenoid saponins from Acacia victoriae (Bentham) decrease tumor cell proliferation and induce apoptosis. Cancer Res 61:5486–5490.

    PubMed  CAS  Google Scholar 

  • Nagamune, K., Beatty, W.L., and Sibley, L.D. (2007a) Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukaryot Cell 6:2147–2156.

    Article  CAS  Google Scholar 

  • Nagamune, K., Moreno, S.N., and Sibley, L.D. (2007b) Artemisinin-resistant mutants of Toxoplasma gondii have altered calcium homeostasis. Antimicrob Agents Chemother 51:3816–3823.

    Article  CAS  Google Scholar 

  • Odds, F.C., Brown, A.J., and Gow, N.A. (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279.

    Article  PubMed  CAS  Google Scholar 

  • Osbourn, A.E. (2003) Saponins in cereals. Phytochemistry 62:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Parniske, M. (2005) Plant-fungal associations: cue for the branching connection. Nature 435:750–751.

    Article  PubMed  CAS  Google Scholar 

  • Perret, X., Staehelin, C., and Broughton, W.J. (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201.

    Article  PubMed  CAS  Google Scholar 

  • Peters, N.K., Frost, J.W., and Long, S.R. (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980.

    Article  PubMed  CAS  Google Scholar 

  • Rao, A.V., and Gurfinkel, D.M. (2000) The bioactivity of saponins: triterpenoid and steroidal glycosides. Drug Metabol Drug Interact 17:211–235.

    Article  PubMed  CAS  Google Scholar 

  • Rimando, A.M., Dayan, F.E., Czarnota, M.A., Weston, L.A., and Duke, S.O. (1998) A new photosystem II electron transfer inhibitor from sorghum bicolor. J Nat Prod 61:1456.

    Article  PubMed  CAS  Google Scholar 

  • Romagni, J.G., Duke, S.O., and Dayan, F.E. (2000) Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol 123:725–732.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, B.M., Ribnicky, D.M., Lipsky, P.E., and Raskin, I. (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3:360–366.

    Article  PubMed  CAS  Google Scholar 

  • Simons, V., Morrissey, J.P., Latijnhouwers, M., Csukai, M., Cleaver, A., Yarrow, C., and Osbourn, A. (2006) Dual effects of plant steroidal alkaloids on Saccharomyces cerevisiae. Antimicrob Agents Chemother 50:2732–2740.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S.B., and Pelaez, F. (2008) Biodiversity, chemical diversity and drug discovery. Prog Drug Res 65:141, 143–174.

    Google Scholar 

  • Smith, J.G., and Nemerow, G.R. (2008) Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe 3:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Sparg, S.G., Light, M.E., and van Staden, J. (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243.

    Article  PubMed  CAS  Google Scholar 

  • Thevissen, K., Ferket, K.K., Francois, I.E., and Cammue, B.P. (2003a) Interactions of antifungal plant defensins with fungal membrane components. Peptides 24:1705–1712.

    Article  CAS  Google Scholar 

  • Thevissen, K., Kristensen, H.H., Thomma, B.P., Cammue, B.P., and Francois, I.E. (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12:966–971.

    Article  PubMed  CAS  Google Scholar 

  • Thevissen, K., Francois, I.E., Takemoto, J.Y., Ferket, K.K., Meert, E.M., and Cammue, B.P. (2003b) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226:169–173.

    Article  CAS  Google Scholar 

  • Thevissen, K., Warnecke, D.C., Francois, I.E., Leipelt, M., Heinz, E., Ott, C., et al. (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905.

    Article  PubMed  CAS  Google Scholar 

  • Thevissen, K., Idkowiak-Baldys, J., Im, Y.J., Takemoto, J., Francois, I.E., Ferket, K.K., et al. (2005) SKN1, a novel plant defensin-sensitivity gene in Saccharomyces cerevisiae, is implicated in sphingolipid biosynthesis. FEBS Lett 579:1973–1977.

    Article  PubMed  CAS  Google Scholar 

  • Thomma, B.P., Cammue, B.P., and Thevissen, K. (2002) Plant defensins. Planta 216:193–202.

    Article  PubMed  CAS  Google Scholar 

  • Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., et al. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200.

    Article  PubMed  CAS  Google Scholar 

  • VanEtten, H.D., Mansfield, J.W., Bailey, J.A., and Farmer, E.E. (1994) Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipins”. Plant Cell 6:1191–1192.

    Article  PubMed  CAS  Google Scholar 

  • Verma, C., Seebah, S., Low, S.M., Zhou, L., Liu, S.P., Li, J., and Beuerman, R.W. (2007) Defensins: antimicrobial peptides for therapeutic development. Biotechnol J 2:1353–1359.

    Article  PubMed  CAS  Google Scholar 

  • Vincken, J.P., Heng, L., de Groot, A., and Gruppen, H. (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68: 275–297.

    Article  PubMed  CAS  Google Scholar 

  • Wink, M. (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19.

    Article  PubMed  CAS  Google Scholar 

  • Wong, J.H., Xia, L., and Ng, T.B. (2007) A review of defensins of diverse origins. Curr Protein Pept Sci 8:446–459.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, J.X., Huang, G.Q., and Zhang, S.H. (2007) Soyasaponins inhibit the proliferation of Hela cells by inducing apoptosis. Exp Toxicol Pathol 59:35–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Morrissey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morrissey, J.P. (2009). Biological Activity of Defence-Related Plant Secondary Metabolites. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_13

Download citation

Publish with us

Policies and ethics