Skip to main content

Rosaceaous Genome Sequencing: Perspectives and Progress

  • Chapter
Genetics and Genomics of Rosaceae

The long-term goal of plant genomics is to identify, isolate and determine the function of plant genes that are associated with both vegetative and reproductive phenotypes. Most phenotypes require the coordinated activity and regulatory control of suites of genes over time and in precise positions within the plant. Until recently, the idea of establishing a comprehensive approach to isolate and characterize all the genes involved in any complex phenotype was a daunting one, and oftentimes it has been necessary to perform whole genome sequencing to obtain all of the gene sequences. The sequence of several plant genomes have been generated including the Arabidopsis, poplar and rice genomes, with the model legume Medicago and sorghum well underway. In addition, large amounts of expressed sequence tag (EST) information are being obtained for many other plants, including rosaceaous plants. The advances in genomics, informatics, and phylogenetics have been developed and refined by these reference projects, to the point that it is now thought that, in many cases, the vast majority of genes of a plant can be identified without the complete genome sequence, however the EST approach to gene identification does not provide valuable information regarding promoters and other non-coding regulatory elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arabidopsis Genome Initiative. 2000 Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814): 796–815.

    Article  Google Scholar 

  • Arumuganathan K and Earle E. 1991. Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9: 208–218.

    Article  CAS  Google Scholar 

  • Baird WV, Estager AS, and Wells J. 1994. Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Amer Soc Hort Sci 119:1312–1316.

    Google Scholar 

  • Bennett MD and Smith JB. 1991. Phil Trans R Soc Lond B 334: 309.

    Article  CAS  Google Scholar 

  • Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z. 1998. Grass genomes. Proc Natl Acad Sci USA 95(5):1975–1978.

    Article  CAS  PubMed  Google Scholar 

  • Bentley DR. 2006. Whole-genome re-sequencing. Curr Opin Genet Dev 16: 545–552.

    Article  CAS  PubMed  Google Scholar 

  • Braslavsky I, Hebert B, Kartalov E and Quake SR. 2003. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A 100: 3960–3964.

    Article  CAS  PubMed  Google Scholar 

  • Cai WW, Chen R, Gibbs RA and A Bradley. 2001. A clone-array pooled shotgun strategy for sequencing large genomes. Genome Res. 11(10):1619–1623.

    Article  CAS  PubMed  Google Scholar 

  • Cartwright DA, Troggio M, Velasco R and Gutin A. 2007. Genetic mapping in the presence of genotyping errors. Genetics 176: 2521–2527.

    Article  CAS  PubMed  Google Scholar 

  • Chetverina HV and Chetverin AB. 1993. Cloning of RNA molecules in vitro. Nucleic acids Res 21: 2349–2353.

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Cosson P, Poizat C, Laigret F, Aranzana MJ, Arús P, Dettori MT, Verde I and Quarta R. 2003. Synteny within the Prunus genomes detected by molecular markers. Acta Hort. 622:177–187.

    CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P Howad W, Arús P. 2004. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101(26):9891–98916.

    Article  CAS  PubMed  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A and Hanke V. 2007 Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus x domestica Borkh.). Plant Breed 126: 137–145.

    Article  CAS  Google Scholar 

  • Folta KM, Dhingra A, Howard L, Stewart PJ and Chandler CK. 2006. Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 224: 1058–1067.

    Article  CAS  PubMed  Google Scholar 

  • Foulongne M, Pascal T, Arús P and Kervella J. 2003. The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping Theor Appl Genet 107:227–238.

    Google Scholar 

  • Doebley J and Lukens L. 1998. Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082.

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae. Rd. Science 269:496–512.

    CAS  Google Scholar 

  • Fredlake CP, Hert DG, Kan CW, Chiesl TN, Root BE, Forster RE and Barron AE. 2008. Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes. Proc Natl Acad Sci U S A 105: 476–481.

    Article  CAS  PubMed  Google Scholar 

  • Gale MD and Devos KM. 1998. Plant comparative genetics after 10 years. Science 282:656–659.

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565): 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Hall N. 2007. Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210: 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Gasic K, Marron B, Beever JE and Korban SS. 2007. A BAC-based physical map of the apple genome. Genomics 89: 630–637

    Article  CAS  PubMed  Google Scholar 

  • Jelenkovic G and Harrington E. 1972. Morphology of the pachytene chromosomes in Prunus persica. Can J Genet Cytol 14: 317–324.

    Google Scholar 

  • Joobeur T, Periam N, de Vicente MC, King GJ and Arús P. 2000. Development of a second generation linkage map for almond using RAPD and SSR markers. Genome Aug;43(4):649–655.

    Article  CAS  Google Scholar 

  • Jung S, Jiwan D, Cho I, Lee T, Abbott A, Sosinski B, and D Main. 2008. Synteny of Prunus and other model plant species. Genome Bio. submitted.

    Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albert AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi S.K, Codani JJ, Connerton IF, Danchin A, et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 390:249–256.

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY and Aldwinckle HS. 2007. Overexpression of the apple MpNPR1 gene confers increased disease resistance in malus x domestica. Mol Plant Microbe Interact 20: 1568–1580.

    Article  CAS  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, et al. 2005 Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380.

    CAS  PubMed  Google Scholar 

  • McCouch S. 1998. Toward a plant genomics initiative: thoughts on the value of cross-species and cross-genera comparisons in the grasses. Proc Natl Acad Sci USA. 95(5):1983–1985.

    Article  CAS  PubMed  Google Scholar 

  • Mitra RD, Shendure J, Olejnik J, Edyta Krzymanska O and Church GM. 2003. Fluorescent in situ sequencing on polymerase colonies. Anal Biochem 320: 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Moore J and Janick J. 1975. (eds.) Advances in Fruit Breeding. Purdue University Press, West Lafayette, IN, 623 p.

    Google Scholar 

  • Norelli JL, Borejsza-Wysocka E, Baldo AM, Aldwinckle HS, Bassett CL, Farrell RE, Malnoy M, Lalli DA, Korban SS, Gasic K and Wisniewski ME. 2007. Functional genomic analysis of apple (Malus) ESTs associated with fire blight (Erwinia amylovora). Phytopathology 97, S185–S185.

    Google Scholar 

  • Nyren P, Pettersson B and Uhlen M. 1993. Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal Biochem 208: 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, Dike S, de la Bastide M, Martienssen RA and McCombie WR. 2003. Maize genome sequencing by methylation filtration. Science 302(5653): 2115–2117.

    Article  PubMed  Google Scholar 

  • Pennisi, E. 1998. A bonanza for plant genomics. Science. 282(5389):652–654.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, and AH Paterson. 2002. Integration of cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12(5):795–807.

    Article  CAS  PubMed  Google Scholar 

  • Phipps JB, Robertson KR, Smith PG and Rohrer JR. 1990. A checklist of the subfamily maloideae (rosaceae). Can J Bot Rev (Canadienne De Botanique) 68: 2209–2269.

    Article  Google Scholar 

  • Rabinowicz PD. 2003 Constructing gene-enriched plant genomic libraries using methylation filtration technology. Methods Mol Biol 236: 21–36.

    CAS  PubMed  Google Scholar 

  • Ronaghi M, Nygren M, Lundeberg J and Nyren P. 1999. Analyses of secondary structures in DNA by pyrosequencing. Anal Biochem 267: 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD and Church GM. 2005. Accurate multiplex polony sequencing of an evolved bacterial genome. Science (New York) 309: 1728–1732.

    Article  CAS  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S., Horikoshi K. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331.

    Article  CAS  PubMed  Google Scholar 

  • Tatum TC, Stepanovic S, Biradar DP, Rayburn AL and Korban SS. 2005. Variation in nuclear DNA content in Malus species and cultivated apples. Genome 48: 924–930.

    CAS  PubMed  Google Scholar 

  • Teo G, Suziki Y, Uratsu S L, Lampinen B, Ormonde N, Hu WK, DeJong TM and Dandekar AM. 2006. Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc Natl Acad Sci U S A 103: 18842–18847.

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604.

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma TM, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattč L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando MS, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, and Viola R. High quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE. 2007 2(12):e1326

    Article  PubMed  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA and Tabata S. 2005. Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137(4):1174–1181.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565): 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Waterston RH, Lander ES, and Sulston JE. 2003. More on the sequencing of the human genome. PNAS 100(6): 3022–3024.

    Article  CAS  PubMed  Google Scholar 

  • Zahrkikh A, Troggio M, Pruss D,Pindo M, Eldrdge G, Cestaro A, Mitchell JT, Vezzulli S, Bhatnagar S, Fontana P, Viola R, Gutin A, Salamini F, Skolnick M, and Velasco R. 2008. Sequencing and assembly of highly heterozygous genome of Vitis vinifera L. cv. pinot noir: problems and solutions. J Biotech (published ahead of print).

    Google Scholar 

  • Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, and Abbott AG. 2008. A framework physical map for peach, a model Rosaceae species. Tree Genet Genomes (online first 1614–2950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sosinski, B. et al. (2009). Rosaceaous Genome Sequencing: Perspectives and Progress. In: Folta, K.M., Gardiner, S.E. (eds) Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77491-6_28

Download citation

Publish with us

Policies and ethics