Skip to main content

Methods for Genetic Analysis in the Triticeae

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

The objective of genetic analysis is to reveal genome structural and functional organization. One of the major tools developed at early stages of genetics was genetic mapping. Genetic maps are a very important tool in evolutionary genomics and numerous practical applications like breeding, medical genetics, and gene cloning. An important usage of multilocus maps is genetic dissection of quantitative traits, or mapping quantitative trait loci (QTL). Fine QTL mapping is a prerequisite for efficient marker-assisted selection and map-based cloning. However, the fine mapping challenge, especially if the target is a gene of weak or moderate effect, requires large sample sizes and dense maps. New array-based technologies (SNP and tilling arrays) partially solve this problem but at a very high project-wise genotyping cost. This is why despite some technical obstacles, genetic analysis based on selective genotyping and selective DNA pooling becomes very popular, especially in human genetics. In this chapter we consider methods for building genetic maps (Section 6.1), various versions of “multiple” approach for QTL mapping (Section 6.2), and a new cost-effective method for genetic mapping based on selective DNA pooling (Section 6.3). Whenever possible, the examples are based on Triticeae species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ben-Dor, A., Chor, B., and Pelleg, D. (2000). RHO-Radiation hybrid ordering. Genome Res. 10: 365–378.

    Article  PubMed  CAS  Google Scholar 

  • Boyko, E., Kalendar, R., Korzun, V., Fellers, J., Korol, A., Schulman, A.H., and Gill, B.S. (2002). A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol. Biol. 48: 767–790.

    Article  PubMed  CAS  Google Scholar 

  • Brohede, J., Dunne, R., Mckay, J.D., and Hannan, G.N. (2005). PPC: an algorithm for accurate estimation of SNP allele frequencies in small equimolar pools of DNA using data from high density microarrays. Nucl. Acids Res. 33: e142.

    Article  PubMed  Google Scholar 

  • Carleos, C., Baro, J.A., Canon, J., and Corral, N. (2003). Asymptotic variances of QTL estimators with selective DNA pooling. J. Hered 94: 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, G.A. and Doegre, R.W. (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    PubMed  CAS  Google Scholar 

  • Darvasi, A. and Soller, M. (1994). Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138: 1365–1373.

    PubMed  CAS  Google Scholar 

  • Dekkers, J.C.M. (2000). Quantitative trait locus mapping based on selective DNA pooling. Anim. Breed. Genet. 117: 1–16.

    Article  CAS  Google Scholar 

  • Denell, R.E. and Keppy, D.O. (1979). The nature of genetic recombination near the third chromosome centromere of Drosophila melanogaster. Genetics 93: 117–130.

    PubMed  CAS  Google Scholar 

  • Dobzhansky, T.H., Spassky, B., and Anderson, W. (1965). Bichromosomal synthetic semilethals in Drosophila pseudoobscura. Proc. Nat. Acad. Sci. USA 53: 345–348.

    Article  Google Scholar 

  • Eberhard, S.A. and Russel, W.A. (1966). Stability parameters for comparing varieties. Crop Sci. 6: 36–40.

    Article  Google Scholar 

  • Efron, B. (1979). Bootstrap method: another look at the jackknife. Ann. Stat. 7: 1–26.

    Article  Google Scholar 

  • Emrich, S.J., Aluru, S., Fu, Y., Wen, T.J., Narayanan, M., Guo, L., Ashlock, D.A., and Schnable, P.S. (2004). A strategy for assembling the masize (Zea mays L.) genome. Bioinformatics 20: 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Esch, E. and Weber, W.E. (2002). Investigation of crossover interference in barley (Hordeum vulgare L.) using the coefficient of coincidence. Theor. Appl. Genet. 104: 786–796.

    Article  PubMed  Google Scholar 

  • Falk, C.T. (1992) Preliminary ordering of multiple linked loci using pairwise linkage data. Genet. Epidemiol. 9, 367–375.

    Google Scholar 

  • Finlay, K.W. and Wilkinson, G.N. (1963). The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 14: 742–754.

    Article  Google Scholar 

  • Flint-Garcia, S.A., Thornsberry, J.M., and Buckler, E.S. (2003). Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54: 357–374.

    Article  PubMed  CAS  Google Scholar 

  • Givry, S., Bouchez, M., Chabrier, P., Milan, D., and Schiex, T. (2005). CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 8: 1703–1704.

    Google Scholar 

  • Hayes, P.M., Liu, B.H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Franckowiak, J., Rasmusson, D., Sorrels, M., Ullrich, S.E., Wesenberg, D., and Kleinhofs, A. (1993). Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet. 87: 392–401.

    Article  Google Scholar 

  • Hillel, J., Avner, R., Baxter-Jones, C., Dunnington, E.A., Cahaner, A. et al. (1990). DNA fingerprints from blood mixes in chickens and turkeys. Anim. Biotechnol. 2: 201–204.

    Article  Google Scholar 

  • Jansen, R.C. and Stam, P. (1994). High resolution of quantitative t1r4a5it5s.into multiple loci via interval mapping. Genetics 136: 1447–1455.

    PubMed  CAS  Google Scholar 

  • Jansen, J., de Jong, A.G., and Ooijen, J.W. (2001). Constructing dense genetic linkage maps. Theor. Appl. Genet. 102: 1113–1122.

    Article  CAS  Google Scholar 

  • Jansen, R.C., Van Ooijen, J.M., Stam, P., Lister, C., and Dean, C. (1995). Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor. Appl. Genet. 91: 33–37.

    Article  CAS  Google Scholar 

  • Jiang, C. and Zeng, Z.-B. (1995). Multiple trait analysis and genetic mapping for quantitative trait loci. Genetics 140: 1111–1127.

    PubMed  CAS  Google Scholar 

  • Johnson, T. (2005). Multipoint linkage disequilibrium mapping using multilocus allele frequency data. Ann. Hum. Genet. 69: 474–497.

    Article  PubMed  CAS  Google Scholar 

  • Joppa, L.R., Nevo, E., and Beiles, A. (1995). Chromosome translocations in wild populations of tetraploid emmer wheat in Israel and Turkey. Theor. Appl. Genet. 91: 713–719.

    Article  Google Scholar 

  • Kao, C.-H., Zeng, Z.-B., and Teasdale, R.D. (1999). Multiple interval mapping for quantitative trait loci. Genetics 152: 1203–1216.

    PubMed  CAS  Google Scholar 

  • Kearsey, M.J. (1998). The principles of QTL analysis (a minimal mathematics approach). J. Exp. Bot. 49: 1619–1623.

    Article  CAS  Google Scholar 

  • Klein, P.E., Klein, R.R., Cartinhour, S.W., Ulanch, P.E., Dong, J., et al. (2000). A High-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res. 10: 789–807.

    Article  PubMed  CAS  Google Scholar 

  • Korol, A.B., Preygel, I.A., and Bocharnikova, N.I. (1987). Linkage between loci of quantitative characters and marker loci. 5. Combined analysis of several markers and quantitative characters. Genetika (USSR) 23: 1421–1431 (in Russian). English translation in Soviet Genetics 1988, 23: 996–1004 (Plenum Publ. Co., N.Y.).

    CAS  Google Scholar 

  • Korol, A.B., Preygel, I.A., and Preygel, S.I. (1994). Recombination Variability and Evolution. Chapman & Hall, London.

    Google Scholar 

  • Korol, A.B., Ronin, Y.I., and Kirzhner, V.M. (1995). Multitrait analysis in interval mapping of QTL. Genetics 140: 1137–1147.

    PubMed  CAS  Google Scholar 

  • Korol, A., Ronin, Y., Tadmor, Y., Bar-Zur, A., Kirzhner, V.M., and Nevo, E. (1996). Estimating variance effect of QTL: An important prospect to increase the resolution power of interval mapping. Genet. Res. 67: 187–194.

    Article  Google Scholar 

  • Korol, A.B., Ronin, Y.I., and Nevo, E. (1998). Approximated analysis of QTL-environmental interaction with no limits on the number of environments. Genetics 148: 2015–1028.

    PubMed  CAS  Google Scholar 

  • Korol, A., Ronin, Y., Itzcovich, A., and Nevo, E. (2001). Enhanced efficiency of QTL mapping analysis based on multivariate complexes of quantitative traits. Genetics 157: 1789–1803.

    PubMed  CAS  Google Scholar 

  • Korol, A., Shirak, A., Cnaani, A., and Hallerman, E.M. (2007a). Detection and analysis of QTLs for economic traits in aquatic species. In: Liu, Z.J. (ed.), Aquaculture Genome Technologies. Blackwell, pp. 169–197.

    Google Scholar 

  • Korol, A., Frenkel, Z., Cohen, L., Lipkin, E., and Soller, M. (2007b). Fractioned DNA Pooling: A New Cost-Effective Strategy for Fine Mapping of Quantitative Trait Loci. Genetics 176: 2611–2623.

    Google Scholar 

  • Korzun, V., Malyshev, S., Voylokov, A.V., and Börner, A. (2001). A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 102:709–717.

    Article  CAS  Google Scholar 

  • Lacaze, X., Tanny, S., and Korol, A. (2009a). Transcriptional plasticity differing across genetic backgrounds: An epistatic mechanism in Arabidopsis thaliana (in revision).

    Google Scholar 

  • Lacaze, X. Hayes, P.M., and Korol, A. (2009b). Genetics of phenotypic plasticity: QTL analysis in barley, Hordeum vulgare. Heredity 102:163–173.

    Google Scholar 

  • Lander, E.S. and Botstein, D. (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.

    Google Scholar 

  • Liu, B.H. (1998). Statistical Genomics: Linkage, Mapping, and QTL Analysis. CRC Press, New York.

    Google Scholar 

  • Liu, C.J., Devos, K.M., Chinoy, C.N., Atkinson, M.D., and Gale, M.D. (1992). Non- homoeologous translocations between group-4, 5 and 7 chromosomes in wheat and rye. Theor. Appl. Genet. 83: 305–312.

    Article  Google Scholar 

  • Mangin, B., Thoquet, P., and Grimsley, N. (1998). Pleiotropic QTL analysis. Biometrics 54: 88–99.

    Article  Google Scholar 

  • Menotti-Raymond, M., David, V.A., Chen, Z.Q., Menotti, K.A., Sun, S., Schaffer, A.A., Agarwala, R., Tomlin, J.F., O’Brien, S.J., and Murphy, W.J. (2003).Second-generation integrated genetic linkage/ radiation hybrid maps of the domestic cat (Felis catus). J. Hered. 94: 95–106.

    Article  PubMed  CAS  Google Scholar 

  • Mester, D., Ronin, Y., Minkov, D., Nevo, E., and Korol, A. (2003a). Constructing large scale genetic maps using Evolutionary Strategy Algorithm. Genetics 165: 2269–2282.

    Google Scholar 

  • Mester, D., Ronin, Y., Hu, Y., Nevo, E. and Korol, A. (2003b). Efficient multipoint mapping: Making use of dominant repulsion-phase markers. Theor. Appl. Genet. 107, 1102–1112.

    Google Scholar 

  • Mester, D.I., Ronin, Y.I., Nevo, E., and Korol, A.B. (2004). Fast and high precision algorithms for optimization in large scale genomic problems. Comp Biol & Chemistry 28: 281–290.

    Article  CAS  Google Scholar 

  • Mester, D., Ronin, Y., Korostishevsky, M., Pikus, V., Glazman, A., and Korol, A.B. (2005). Multilocus consensus genetic maps (MCGM): Formulation, algorithms and results. Computat. Biol. Chem. 30: 12–20.

    Article  Google Scholar 

  • Michie, D. (1953). Affinity: a new genetic phenomenon in the house mouse. Nature 171: 26–27.

    Article  PubMed  CAS  Google Scholar 

  • Morrell, P.L., Toleno, D.M., Lundy, K.E., and Clegg, M.T. (2005). Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp spontaneum) despite high rates of self-fertilization. Proc. Natl. Acad. Sci. USA 102: 2442–2447.

    Article  PubMed  CAS  Google Scholar 

  • Morrell, P.L., Toleno, D.M., Lundy, K.E., and Clegg, M.T. (2006). Estimating the contribution of mutation, recombination and gene conversion in the generation of haplotypic diversity. Genetics 173: 1705–1723.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J., Korol, A.B., Fahima, T., Roder, M.S., Ronin, Y.I., Li, Y.C., and Nevo, E. (2000). Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res. 10: 1509–1531.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J., Ronin, Y., Fahima, T., Röder, M.S., Li, Y., Nevo, E., and Korol, A.B. (2003). Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Natl. Acad. Sci. USA 100: 2489–2494.

    Article  CAS  Google Scholar 

  • Plagnol, V., Padhukasahasram, B., Wall, J.D., Marjoram, P., and Nordborg, M. (2006). Relative influences of crossing over and gene conversion on the pattern of linkage disequilibrium in Arabidopsis thaliana. Genetics 172: 2441–2448.

    Article  PubMed  CAS  Google Scholar 

  • Romagosa, I., Ullrich, S.E., Han, F., and Hayes, P.M. (1996). Use of additive main effects and multiplicative interaction model in QTL mapping for adaptation in barley. Theor. Appl. Genet. 93: 30–37.

    Article  Google Scholar 

  • Ronin, Y.I., Kirzhner, V.M., and Korol, A.B. (1995). Linkage between loci of quantitative traits and marker loci. Multitrait analysis with a single marker. Theor. Appl. Genet. 90: 776–786.

    Article  Google Scholar 

  • Ronin, Y.I., Korol, A.B., and Weller, J.I. (1998). Selective genotyping to detect quantitative trait loci affecting multiple traits: interval mapping analysis. Theor. Appl. Genet. 97: 1169–1178.

    Article  Google Scholar 

  • Ronin, Y., Korol, A., and Nevo, E. (1999). Single- and multiple-trait analysis of linked QTLs: some asymptotic analytical approximation. Genetics 151: 387–396.

    PubMed  CAS  Google Scholar 

  • Sari-Gorla, M., Calinski, T., Kaczmarek, Z., and Krajewski, P. (1997). Detection of QTL-environment interaction in maize by a least squares interval mapping method. Heredity 78: 146–157.

    Google Scholar 

  • Schiex, T. and Gaspin, C. (1997). Carthagene: constructing and joining maximum likelihood genetic maps. ISMB 5: 258–267.

    PubMed  CAS  Google Scholar 

  • Sinclair, D.A. (1975). Crossing over between closely linked markers spanning the centromere of chromosome 3 in Drosophila melanogaster. Genet. Res. 11: 173–185.

    Article  Google Scholar 

  • SØgaard, B. (1977). The localization of eceriferum loci in barley. V. Three point tests of genes on chromosome 1 and 3 in barley. Carlsberg Res. Commun. 42: 67–75.

    Article  Google Scholar 

  • Voudouris, C. (1997). Guided local search for combinatorial problems, Ph.D. thesis, Department of Computer Science, University of Essex, Colchester.

    Google Scholar 

  • Wang, J., Koehler, K.J., and Dekkers, J.C.M. (2007). Interval mapping of quantitative trait loci with selective DNA pooling data. Genet. Select. Evol. 39: 685–710.

    Article  CAS  Google Scholar 

  • Weeks, D. and Lange, K. (1987). Preliminary ranking procedures for multilocus ordering. Genomics 1: 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Weller, J.I., Kashi, Y., and Soller, M. (1990). Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy-cattle. J. Dairy Sci. 73: 2525–2537.

    Article  PubMed  CAS  Google Scholar 

  • Weller, J.I., Wiggans, G.R., Van Raden, P.M., and Ron, M. (1996). Application of a canonical transformation to detection of quantitative trait loci with the aid of genetic markers in a multi-trait experiment. Theor. Appl. Genet. 92: 998–1002.

    Article  Google Scholar 

  • West, M.A.L., Kim, K., Kliebenstein, D.J., van Leeuwen, H., Michelmore, R.W., Doerge, R.W., and St. Clair, D.A. (2007). Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175: 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  • Yap, I., Schneider, D., Kleinberg, J., Matthews, D., Cartinhour, S., and McCouch, S. (2003). A graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics 165: 2235–2247.

    PubMed  CAS  Google Scholar 

  • Zeng, Z.-B. (1994). Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is partially supported by the Israeli Ministry of Absorption and the United States-Israel Binational Agricultural Research and Development Foundation (grant # 9615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Korol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korol, A., Mester, D., Frenkel, Z., Ronin, Y. (2009). Methods for Genetic Analysis in the Triticeae . In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_6

Download citation

Publish with us

Policies and ethics