Skip to main content

Advertisement

Log in

Regulation of the MID1 protein function is fine-tuned by a complex pattern of alternative splicing

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Clinical features of Opitz BBB/G syndrome are confined to defects of the developing ventral midline, whereas the causative gene, MID1, is ubiquitously expressed. Therefore, a non-redundant physiological function of the MID1 product appears to be developmentally restricted. Here, we report the identification of several alternative MID1 exons in human, mouse and fugu. We show that splice variants of the MID1 gene that are comparable in terms of function occur in the three organisms, suggesting an important role in the regulation of the MID1 protein function. Accordingly, we observed differential MID1 transcript patterns in a tissue-specific manner by Northern blot and RT-PCR. The identified splice variants cause loss-of-function effects via several mechanisms. Some introduce a stop codon followed by a novel poly(A+) tail, leading to the formation of C-terminally truncated proteins. Dominant negative effects through altered binding to the MID1-interacting protein α4 in vitro could be demonstrated in a couple of cases. Others carry premature termination codons without poly(A+) tails. These are degraded by nonsense mediated mRNA decay (NMD). Our data reveal a mechanism conserved in human, mouse and fugu that regulates developmentally restricted MID1 activity and suggest NMD to be critical in the translational regulation of a ubiquitously transcribed mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5A–F
Fig. 6A–C

Similar content being viewed by others

References

  • Buchner G, Montini E, Andolfi G, Quaderi N, Cainarca S, Messali S, Bassi MT, Ballabio A, Meroni G, Franco B (1999) MID2, a homologue of the Opitz syndrome gene MID1: similarities in subcellular localization and differences in expression during development. Hum Mol Genet 8:1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Cainarca S, Messali S, Ballabio A, Meroni G (1999) Functional characterization of the Opitz syndrome gene product (midin): evidence for homodimerization and association with microtubules throughout the cell cycle. Hum Mol Genet 8:1387–1396

    Article  CAS  PubMed  Google Scholar 

  • Cox TC, Allen LR, Cox LL, Hopwood B, Goodwin B, Haan E, Suthers GK (2000) New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome. Hum Mol Genet 9:2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Dal Zotto L, Quaderi NA, Elliott R, Lingerfelter PA, Carrel L, Valsecchi V, Montini E, Yen CH, Chapman V, Kalcheva I, Arrigo G, Zuffardi O, Thomas S, Willard HF, Ballabio A, Disteche CM, Rugarli EI (1998) The mouse Mid1 gene: implications for the pathogenesis of Opitz syndrome and the evolution of the mammalian pseudoautosomal region. Hum Mol Genet 7:489–499

    Article  PubMed  Google Scholar 

  • Fields S, Sternglanz R (1994) The two-hybrid system: an assay for protein-protein interactions. Trends Genet 10:286–292

    CAS  PubMed  Google Scholar 

  • Gonzalez CI, Bhattacharya A, Wang W, Peltz SW (2001) Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274:15–25

    Article  CAS  PubMed  Google Scholar 

  • Gruer MJ, Artymiuk PJ, Guest JR (1997) The aconitase family: three structural variations on a common theme. Trends Biochem Sci 22:3–6

    Article  CAS  PubMed  Google Scholar 

  • Hentze MW, Kulozik AE (1999) A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96:307–310

    CAS  PubMed  Google Scholar 

  • Lamba JK, Adachi M, Sun D, Tammur J, Schuetz EG, Allikmets R, Schuetz JD (2003) Nonsense mediated decay downregulates conserved alternatively spliced ABCC4 transcripts bearing nonsense codons. Hum Mol Genet 12:99–109

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  • Landry JR, Mager DL (2002) Widely spaced alternative promoters, conserved between human and rodent, control expression of the Opitz syndrome gene MID1. Genomics 80:499–508

    Article  CAS  PubMed  Google Scholar 

  • Lewis B, Green R, Brenner S (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 100:189–193

    Article  CAS  PubMed  Google Scholar 

  • Lykke-Andersen J (2001) mRNA quality control: marking the message for life or death. Curr Biol 11: R88–91

    CAS  PubMed  Google Scholar 

  • Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30:13–19

    Article  CAS  PubMed  Google Scholar 

  • Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H (2001) The HUGO Gene Nomenclature Committee (HGNC). Hum Genet 109:678–680

    CAS  PubMed  Google Scholar 

  • Quaderi NA, Schweiger S, Gaudenz K, Franco B, Rugarli EI, Berger W, Feldman GJ, Volta M, Andolfi G, Gilgenkrantz S, Marion RW, Hennekam RC, Opitz JM, Muenke M, Ropers HH, Ballabio A (1997) Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet 17:285–291

    CAS  PubMed  Google Scholar 

  • Robin NH, Opitz JM, Muenke M (1996) Opitz G/BBB syndrome: clinical comparisons of families linked to Xp22 and 22q, and a review of the literature. Am J Med Genet 62:305–317

    Article  CAS  PubMed  Google Scholar 

  • Schweiger S, Foerster J, Lehmann T, Suckow V, Muller YA, Walter G, Davies T, Porter H, van Bokhoven H, Lunt PW, Traub P, Ropers HH (1999) The Opitz syndrome gene product, MID1, associates with microtubules. Proc Natl Acad Sci USA 96:2794–2799

    Article  CAS  PubMed  Google Scholar 

  • Suckow V, Fartmann B, Todt T, Maarel Svd, Foerster J, Schweiger S (1998) A rapid and inexpensive method for large-scale DNA sequencing of regions with large amounts of repetitive elements. Trends Genet TTO 01332

  • Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH, Schneider R, Schweiger S (2001) MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 29:287–294

    Article  CAS  PubMed  Google Scholar 

  • Tupler R, Perini G, Green MR (2001) Expressing the human genome. Nature 409:832–833

    Article  CAS  PubMed  Google Scholar 

  • Van den Veyver IB, Cormier TA, Jurecic V, Baldini A, Zoghbi HY (1998) Characterization and physical mapping in human and mouse of a novel RING finger gene in Xp22. Genomics 51:251–261

    Article  PubMed  Google Scholar 

  • Wilson GM, Sun Y, Sellers J, Lu H, Penkar N, Dillard G, Brewer G (1999) Regulation of AUF1 expression via conserved alternatively spliced elements in the 3′ untranslated region. Mol Cell Biol 19:4056–4064

    CAS  PubMed  Google Scholar 

  • Winter J, Lehmann T, Suckow V, Kijas Z, Kulozik A, Kalscheuer V, Hamel B, Devriendt K, Opitz J, Lenzner S, Ropers HH, Schweiger S (2003) Duplication of the MID1 first exon in a patient with Opitz G/BBB syndrome. Hum Genet 112:249–254

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Reinald Fundele, who provided the mouse tissues. The work was supported by the Deutsche Forschungsgemeinschaft (DFG project C04, SFB 577)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susann Schweiger.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, J., Lehmann, T., Krauß, S. et al. Regulation of the MID1 protein function is fine-tuned by a complex pattern of alternative splicing. Hum Genet 114, 541–552 (2004). https://doi.org/10.1007/s00439-004-1114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1114-x

Keywords

Navigation