Skip to main content

Abstract

Wheat (Triticum aestivum), as one of the world’s important crops, has been studied in depth for its allelopathic potential in weed management. Research on wheat allelopathy has progressed rapidly from the initial evaluation of allelopathic potential to the identification of allelochemicals and genetic markers associated with wheat allelopathy. Allelopathic activity varied among wheat accessions. Significant varietal differences in the production of allelochemicals were also found. In comparison with weakly allelopathic accessions, strongly allelopathic accessions produced significantly higher amounts of allelochemicals in the shoots or roots of young seedlings, and also exuded larger amounts of allelochemicals into the growth medium. Genetic markers associated with wheat allelopathy and plant cytochrome P450s encoding the biosynthesis of wheat allelochemicals have been identified. Recent advances in metabolomics, transcriptomics and proteomics will greatly assist in the identification of novel allelopathy genes. Ultimately, the allelopathy genes could be manipulated to regulate the biosynthesis of allelochemicals, thereby resulting in better weed suppression via elevated levels of allelopathic potential in commercial wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aharoni, A. and Vorst, O. (2001) DNA microarrays for functional plant genomics. Plant Mol. Biol. 48, 99–118.

    Article  Google Scholar 

  • Al-Hamdi, B., Inderjit, Olofsdotter, M. and Streibig, J. (2001) Laboratory bioassay for phytotoxicity, an example from wheat straw. Agron. J. 93, 43–48.

    Google Scholar 

  • Alsaadawi, I.S., Zwain, K.H.Y. and Shahata, H.A. (1998) Allelopathic inhibition of growth of rice by wheat residues. Allelopathy. J. 5, 163–169.

    Google Scholar 

  • Alsaadawi, I.S. (2001) Allelopathy influence of decomposing wheat residues in agroecosystems. J. Crop Prod. 4, 185–196.

    Article  CAS  Google Scholar 

  • Banks, P.A., and Robinson, E.L. (1980) Effect of straw mulch on preemergence herbicides. Proc. South. Weed Sci. Soc. 33, 286.

    Google Scholar 

  • Belz, R. and Hurle, K. (2001) Tracing the source – do allelochemicals in root exudates of wheat correlate with cultivar-specific weed-suppressing ability? Proc. Br. Crop Prot. Conf. – Weeds. 4D-4, 317–320.

    Google Scholar 

  • Belz, R. and Hurle, K. (2004) A novel laboratory screening bioassay for crop seedling allelopathy. J. Chem. Ecol. 30, 175–198.

    Article  PubMed  CAS  Google Scholar 

  • Bertholdsson, N.O. (2004) Variation in allelopathic activity in spring wheat. In: Proceedings of Second European Allelopathy Symposium – Allelopathy, from understanding to application. Pulawy, Poland, June 4, p. 22.

    Google Scholar 

  • Bertholdsson, N.O. (2005) Early vigour and allelopathy – two useful traits for enhanced barley and wheat competitiveness with weeds. Weed Res. 45, 94–102.

    Article  Google Scholar 

  • Blum, U., Gerig, T.M., Worsham, A.D., Holappa, L.D. and King, L.D. (1992) Allelopathic activity in wheat-conventional and wheat-no-till soils, development of soil extract bioassays. J. Chem. Ecol. 18, 2191–2221.

    Article  Google Scholar 

  • Blum, U., King, L.D. and Brownie, C. (2002) Effects of wheat residues on dicotyledonous weed emergence in a simulated no-till system. Allelopathy J. 9, 159–176.

    Google Scholar 

  • Coja, T., Idinger, J., BlĂĽmel, S. (2006) Effects of the benzoxazolinone boa, selected degradation products and structure related pesticides on soil organisms. Ecotoxicology. 15, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Copaja, S.V., Niemeyer, H.M. and Wratten, S.D. (1991) Hydroxamic acid levels in Chilean and British wheat seedlings. Ann. Appl. Biol. 118, 223–227.

    Article  CAS  Google Scholar 

  • Copaja, S.V., Nicol, D. and Wratten, S.D. (1999) Accumulation of hydroxamic acids during wheat germination. Phytochemistry. 50, 17–24.

    Article  CAS  Google Scholar 

  • Dilday, R.H., Yan, W.G., Moldenhauer, K.A.K. and Gravois, K.A. (1998) Allelopathic activity in rice for controlling major aquatic weeds. In: M. Olofsdotter (Ed.), Allelopathy in Rice, Los Banos, IRRI, Philippines, pp. 7–26.

    Google Scholar 

  • Dong, L.Y., Wang, M.H., Wu, S.W. and Shen, J.L. (2005) Isolation and identification of allelochemicals from wheat and allelopathy on Leptochloa chinensis in direct-seeding rice field. Chin. J. Rice Sci. 19, 551–555.

    CAS  Google Scholar 

  • Duke, S.O., Scheffler, B.E., Dayan, F.E. and Ota, E. (2001) Strategies for using transgenes to produce allelopathic crops. Weed Tech. 15, 826–834.

    Article  CAS  Google Scholar 

  • Ebana, K., Yan, W.G., Dilday, R.H., Namai, H. and Okuno, K. (2001) Analysis of QTL associated with the allelopathic effect of rice using water-soluble extracts. Breeding Sci. 51, 47–51.

    Article  CAS  Google Scholar 

  • Fay, P.K. and Duke, W.B. (1977) An assessment of allelopathic potential in Avena germplasm. Weed Sci. 25, 224–228.

    CAS  Google Scholar 

  • Fomsgaard, I.S., Mortensen, A.G. and Carlsen, S.C.K. (2004) Microbial transformation products of benzoxazinone and benzoxazinone allelochemicals – a review. Chemosphere. 54, 1025–1038.

    Article  PubMed  CAS  Google Scholar 

  • Forkmann, G. and Martens, S. (2001) Metabolic engineering and applications of flavonoids. Curr. Opin. Biotech. 12, 155–160.

    CAS  Google Scholar 

  • Frey, M., Chomet, P., Glawischnig, E., Stettner, C., GrĂĽn, S., Winklmair, A., Eisenreich, W., Bacher, A., Meeley, R.B., Briggs, S.P., Simcox, K. and Gierl, A. (1997) Analysis of a chemical plant defense mechanism in grasses. Science. 277, 696–699.

    Article  PubMed  CAS  Google Scholar 

  • Frey, M., Huber, K., Park, W.J., Sicker, D., Lindberg, P., Meeley, R.B., Simmons, C.R., Yalpani, N. and Gierl, A. (2003) A 2-oxoglutarate-dependent dioxygenase is integrated in DIMBOA-biosynthesis. Phytochemistry. 62, 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, E.M. and Neves, H.C. (1993) Steroidal constituent from mature wheat straw. Phytochemistry. 34, 523–527.

    Article  CAS  Google Scholar 

  • Gaspar, E.M. and Neves, H.C. (1995) Chemical constituents in allelopathic straw of wheat (Triticum aestivum L.). Allelopathy. J. 2, 79–87.

    Google Scholar 

  • Gonzalez-Andujar, J.L. and Fernandez-Quintanilla, C. (2004) Modelling the population dynamics of annual ryegrass (Lolium rigidum) under various weed management systems. Crop Prot. 23, 723–729.

    Google Scholar 

  • Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G. and Kell, D.B. (2004) Metabolomics by numbers, acquiring and understanding global metabolite data. Trends Biotech. 22, 245–252.

    Article  CAS  Google Scholar 

  • Guenzi, W.D., McCalla, T.M. and Norstadt, F.A. (1967) Presence and persistence of phytotoxic substances in wheat, oat, corn and sorghum residues. Agron. J. 59, 163–165.

    CAS  Google Scholar 

  • Haig, T. (2001) Application of hyphenated chromatography-mass spectrometry techniques to plant allelopathy research. J. Chem. Ecol. 27, 2363–2396.

    Article  PubMed  CAS  Google Scholar 

  • Hairston, J.E., Sanford, J.O., Pope, D.F. and Horneck, D.A. (1987) Soybean-wheat doublecropping, implications from straw management and supplemental nitrogen. Agron. J. 79, 281–286.

    Google Scholar 

  • Hashem, A. and Adkins, S.W. (1998) Allelopathic effects of Triticum speltoides on two important weeds of wheat. Plant Prot. Quart. 13, 33–35.

    Google Scholar 

  • Huang, Z., Haig, T., Wu, H., An, M. and Pratley, J. (2003) Correlation between phytotoxicity on annual ryegrass (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat. J. Chem. Ecol. 29, 2263–2279.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, B.L., Courtois, B., Shen, L.S., Li, Z.K., Olofsdotter, M. and Mauleon, R.P. (2001) Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron. J. 93, 21–26.

    CAS  Google Scholar 

  • Jia, C.H., Kudsk, P. and Mathiassen, S.K. (2006) Joint action of benzoxazinone derivatives and phenolic acids. J. Agric. Food Chem. 54, 1049–1057.

    Article  PubMed  CAS  Google Scholar 

  • Lemerle, D., Verbeek, B., Cousens, R.D. and Coombes, N.E. (1996) The potential for selecting spring wheat varieties strongly competitive against weeds. Weed Res. 36, 505–513.

    Article  Google Scholar 

  • Li, X.J., Wang, G.Q., Li, B.H. and Blackshaw, R.E. (2005) Allelopathic effects of winter wheat residues on germination and growth of crabgrass (Digitaria ciliaris) and corn yield. Allelopathy J. 15, 41–48.

    Google Scholar 

  • Liebl, R.A. and Worsham, A.D. (1983) Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J. Chem. Ecol. 9, 1027–1043.

    Article  CAS  Google Scholar 

  • Lodhi, M.A.K., Bilal, R. and Malik, K.A. (1987) Allelopathy in agroecosystems, wheat phytotoxicity and its possible roles in crop rotation. J. Chem. Ecol. 13, 1881–1891.

    Article  CAS  Google Scholar 

  • Lovett, J.V., Hoult, A.H.C. and Christen, O. (1994) Biologically active secondary metabolites of barley. IV. Hordenine production by different barley lines. J. Chem. Ecol. 20, 1945–1954.

    Article  CAS  Google Scholar 

  • Lynch, J.M. (1977) Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw. J. Appl. Bact. 42, 81–87.

    CAS  Google Scholar 

  • Lynch, J.M. (1978) Production and phytotoxicity of acetic acid in anaerobic soils containing plant residues. Soil Biol. Biochem. 10, 131–135.

    Article  CAS  Google Scholar 

  • Lynch, J.M., Gunn, K.B. and Panting, L.M. (1980) On the concentration of acetic acid in straw and soil. Plant Soil. 56, 93–98.

    Article  CAS  Google Scholar 

  • Macias, F.A., Castellano, D. and Molinillo, J.M.G. (2000) Search for a standard bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem. 48, 2512–2521.

    Article  PubMed  CAS  Google Scholar 

  • MacĂ­as, F.A., Oliveros-Bastidas, A., MarĂ­n, D., Castellano, D., Simonet, A.M., Molinillo, J.M.G. (2005) Degradation studies on benzoxazinoids, soil degradation of (2R)-2-O-, -D-Glucopyranosyl-4-hydroxy-(2 H)-1, 4-benzoxazin-3(4 H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from gramineae. J. Agric. Food Chem. 53, 554–561.

    Article  PubMed  CAS  Google Scholar 

  • Mathiassen, S.K., Kudsk, P. and Mogensen, B.B. (2006) Herbicidal effects of soil-incorporated wheat. J. Agric. Food Chem. 54, 1058–1063.

    Article  PubMed  CAS  Google Scholar 

  • Mattice, J.D., Dilday, R.H. and Skulman, B.W. (1999) Using HPLC to predict which accessions of rice will inhibit growth of barnyardgrass (Echinochloa crus-galli). Book of Abstracts,Second World Congress on Allelopathy – Critical Analysis and Future Prospects, August 8–13, Thunder Bay, ON, Canada, p. 133.

    Google Scholar 

  • Nakagawa, E., Amano, T., Hirai, N. and Iwamura, H. (1995) Non-induced cyclic hydroxamic acids in wheat during juvenile stage of growth. Phytochemistry. 38, 1349–1354.

    Article  CAS  Google Scholar 

  • Nakano, H., Morita, S., Shigemori, H. and Hasegawa, K. (2006) Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Regul. 48, 215–219.

    CAS  Google Scholar 

  • Narwal, S.S., Sarmah, M.K. and Nandal, D.P. (1997) Allelopathic effects of wheat residues on growth and yield of fodder crops. Allelopathy J. 4, 111–120.

    Google Scholar 

  • Neves, H.C. and Gaspar, E.M. (1990) Identification of active compounds in wheat straw extracts with allelopathic activity by HRGC-MS and HRGC-FTIR. J. High Resol. Chrom. 13, 550–554.

    Article  Google Scholar 

  • Nicol, D., Copaja, S.V., Wratten, S.D. and Niemeyer, H.M. (1992) A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Ann. Appl. Biol. 121, 11–18.

    Article  CAS  Google Scholar 

  • Niemeyer, H.M. (1988) Hydroxamic acid content of Triticum species. Euphytica 37, 289–293.

    CAS  Google Scholar 

  • Niemeyer, H.M. and Jerez, J.M. (1997) Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity. 79, 10–14.

    Article  CAS  Google Scholar 

  • Nimbal, C.I., Pederson, J., Yerkes, C.N., Weston, L.A. and Weller, S.C. (1996) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44, 1343–1347.

    Article  CAS  Google Scholar 

  • Nomura, T., Ishihara, A., Imaishi, H., Endo, T.R., Ohkawa, H. and Iwamura, H. (2002) Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat. Mol. Genet. Genom. 267, 210–217.

    Article  CAS  Google Scholar 

  • Nomura, T., Ishihara, A., Imaishi, H., Ohkawa, H., Endo, T.R. and Iwamura, H. (2003) Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species, Planta. 217, 776–782.

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge, J. and Benning, C. (2000) Unraveling plant metabolism by EST analysis. Curr. Opin. Plant Biol. 3, 224–228.

    PubMed  CAS  Google Scholar 

  • Olofsdotter, M., Navarez, D.C. and Moody, K. (1995) Allelopathic potential in rice (Oryza sativa L.) germplasm. Ann. Appl. Biol. 127, 543–560.

    Google Scholar 

  • Olofsdotter, M., Jensen, L.B. and Courtois, B. (2002a) Improving crop competitive ability using allelopathy – an example from rice. Plant Breed. 121, 1–9.

    Article  Google Scholar 

  • Olofsdotter, M., Rebulanan, M., Madrid, A., Wang, D.L., Navarez, D. and Olk, D.C. (2002b) Why phenolic acids are unlikely primary allelochemicals in rice. J. Chem. Ecol. 28, 229–242.

    Article  CAS  Google Scholar 

  • Opoku, G., Vyn, T.J. and Voroneym R.P. (1997) Wheat straw placement effects on total phenolic compounds in soil and corn seedling growth. Can. J. Plant Sci. 77, 301–305.

    Google Scholar 

  • Panchuk, M.A. and Prutenskayam N.I. (1973) On the problem of the presence of allelopathic properties in wheat-wheat grass hybrids and their initial forms. In: A.M. Grodzinsky (Ed.), Physiological-Biochemical Basis of Plant Interactions in Phytocenoces. Naukova Dumka, Kiev, pp. 44–47.

    Google Scholar 

  • Perez, F.J. (1990) Allelopathic effect of hydroxamic acids from cereals on Avena sativa and A. fatua. Phytochemistry. 29, 773–776.

    Article  CAS  Google Scholar 

  • Putnam, A.R. and Defrank, J. (1983) Use of phytotoxic plant residues for selective weed control. Crop Prot. 2, 173–181.

    Article  Google Scholar 

  • Rad, U., HĂĽttl, R., Lottspeich, F., Gierl, A. and Frey, M. (2001) Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J. 28, 633–642.

    Article  Google Scholar 

  • Romeo, J.T., and Weidenhamer, J.D. (1999) Bioassays for allelopathy in terrestrial plants. In: K.F. Haynes and J.G. Millar (Eds.), Methods in Chemical Ecology. Vol. 2. Bioassay Methods. Kluwer Academic Publisher, Norvell, MA, pp. 179–211.

    Google Scholar 

  • Salomonsson, A.C., Theander, O. and Aman, P. (1978) Quantitative determination by GLC of phenolic acids as ethyl derivatives in cereal straw. J. Agric. Food Chem. 26, 830–835.

    Article  CAS  Google Scholar 

  • Schulz, M., Friebe, A., Kuck, P., Seipel, M. and Schnabl, H. (1994) Allelopathic effects of living Quackgrass (Agropyron repens L.). Identification of inhibitory allelochemicals exuded from rhizome borne roots. Angewandte Botanik. 68, 195–200.

    CAS  Google Scholar 

  • Shilling, D.G., Liebl, R.A. and Worsham, A.D. (1985) Rye (Secale cereale L.) and wheat (Triticum aestivum L.) mulch, the suppression of certain broadleaved weeds and the isolation and identification of phytotoxins. In: A.R. Putnam and C.S. Tang (Eds.), The Science of Allelopathy. John Wiley & Sons Inc., New York, USA, pp. 243–271.

    Google Scholar 

  • Spruell, J.A. (1984) Allelopathic potential of wheat accessions. Diss. Abst. Int., B Sci. and Eng. 45, 1102B.

    Google Scholar 

  • Steinsiek, J.W., Oliver, L.R. and Collins, F.C. (1982) Allelopathic potential of wheat (Triticum aestivum) straw on selected weed species. Weed Sci. 30, 495–497.

    Google Scholar 

  • Tang, C.S. and Waiss, A.C. (1978) Short-chain fatty acids as growth inhibitors in decomposing wheat straw. J. Chem. Ecol. 4, 225–232.

    Article  CAS  Google Scholar 

  • Thilsted, E. and Murray, D.S. (1980) Effect of wheat straw on weed control in no-tillage soybeans. Proc. South. Weed Sci. Soc. 33, 42.

    Google Scholar 

  • Villagrasa, M., GuillamĂłn, M., Labandeira, A., Taberner, A., Eljarrat, E. and BarcelĂł, D. (2006) Benzoxazinoid allelochemicals in wheat, distribution among foliage, roots, and seeds. J. Agric. Food Chem. 54, 1009–1015.

    Google Scholar 

  • Wallace, J.M. and Whitehand, L.C. (1980) Adverse synergistic effects between acetic, propionic, butyric and valeric acids on the growth of wheat seedling roots. Soil Biol. Biochem. 12, 445–446.

    CAS  Google Scholar 

  • Weckwerth, W. (2003) Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669–689.

    Article  PubMed  CAS  Google Scholar 

  • Weston, L.A. 1990. Cover crop and herbicide influence on row crop seedling establishment in no-tillage culture. Weed Sci. 38, 166–171.

    CAS  Google Scholar 

  • Worsham, A.D. (1984) Crop residues kill weeds. Allelopathy at work with wheat and rye. Crops and Soils Mag. 37, 18–20.

    Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D. and Haig, T. (1999a) Crop cultivars with allelopathic capability. Weed Res. 39, 171–180.

    Article  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (1999b) Simultaneous determination of phenolic acids and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one by GC/MS/MS in wheat (Triticum aestivum L.). J. Chrom. A. 864, 315–321.

    Article  CAS  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D. and Haig, T. (2000a) Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Austr. J. Agric. Res. 51, 259–266.

    Article  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D. and Haig, T. (2000b) Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions by Equal-Compartment-Agar-Method. Austr. J. Agric. Res. 51, 937–944.

    Article  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2000c) Distribution and exudation of allelochemicals in wheat (Triticum aestivum L.). J. Chem. Ecol. 26, 2141–2154.

    Article  CAS  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2000d) Allelochemicals in wheat (Triticum aestivum L.), Variation of phenolic acids in root tissues. J. Agric. Food Chem. 48, 5321–5325.

    Article  CAS  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2001a) Allelochemicals in wheat (Triticum aestivum L.), variation of phenolic acids in shoot tissues. J. Chem. Ecol. 27, 125–135.

    Article  CAS  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2001b) Allelochemicals in wheat (Triticum aestivum L.), Production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. J. Chem. Ecol. 27, 1691–1700.

    Article  CAS  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2001c) Allelochemicals in wheat (Triticum aestivum L.), cultivar difference in the exudation of phenolic acids. J. Agric. Food Chem. 49, 3742–3745.

    Article  CAS  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D. and Haig, T. (2001d) Allelopathy in wheat (Triticum aestivum). Ann. Appl. Biol. 139, 1–9.

    Article  CAS  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2001e) Screening methods for the evaluation of crop allelopathic potential. Bot. Rev. 67, 403–415.

    Article  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2002) Chemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum). J. Agric. Food Chem. 50, 4567–4571.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Pratley, J. and Haig, T. (2003a) Phytotoxic effects of wheat extracts on a herbicide-resistant biotype of annual ryegrass (Lolium rigidum). J. Agric. Food Chem. 51, 4610–4616.

    Article  CAS  Google Scholar 

  • Wu, H., Pratley, J., Ma, W. and Haig, T. (2003b) Quantitative trait loci and molecular markers associated with wheat allelopathy. Theor. Appl. Genet. 107, 1477–1481.

    Article  CAS  Google Scholar 

  • Zuniga, G.E., Copaja, S.V., Bravo, H.R. and Argandona, V.H. (1990) Hydroxamic acids accumulation by wheat callus. Phytochemistry. 29, 2139–2141.

    Article  CAS  Google Scholar 

  • Zuo, S.P., Ma, Y.Q., Inanaga, S. and Li, X.W. (2005a) Allelopathic effect of wheat stubbles with different genotypes on weed suppression. Acta Phytophyl. Sin. 32, 195–200.

    Google Scholar 

  • Zuo, S.P., Ma, Y.Q., Deng, X.P. and Li, X.W. (2005b) Allelopathy in wheat genotypes during the germination and seedling stages. Allelopathy J. 15, 21–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Wu, H., An, M., Liu, D.L., Pratley, J., Lemerle, D. (2008). Recent Advances in Wheat Allelopathy. In: Zeng, R.S., Mallik, A.U., Luo, S.M. (eds) Allelopathy in Sustainable Agriculture and Forestry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77337-7_12

Download citation

Publish with us

Policies and ethics