Skip to main content

Wheat Landraces Versus Resistance to Biotic and Abiotic Stresses

  • Chapter
  • First Online:
Wheat Landraces

Abstract

Double crop production must be doubled by 2050 to ensure the food security of future generations and to overcome the challenge of the “no hunger zone” suggested by the Food and Agriculture Organization, even though abiotic and biotic stresses counteract this purpose. Furthermore, crops especially wheat landraces that are exposed to harmful abiotic and abiotic stresses are prone to reduced yields. Wheat landraces have, today, become more popular again after the rediscovery of their positive feature such as physiological, biochemical, and genetic responses to biotic and abiotic stresses. Since the conventional approaches being practiced for wheat landrace improvement will not be sufficient to achieve the productivity targets, it is essential to integrate the modern approaches leveraged by advances in phenomics, molecular biology, functional genomics, etc. A general overview of the genetic and molecular bases of biotic and abiotic stresses in wheat landraces is discussed in this chapter further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal F, Chaudhari SK, Gul A et al (2015) Bread wheat (Triticum aestivum L.) under biotic and abiotic stresses: an overview. In: Crop production and global environmental. Springer, Cham, pp 293–317

    Chapter  Google Scholar 

  • Akter N, Islam MR (2017) Heat stress effects and management in wheat. A review. Agron Sustain Dev 5:37

    Article  CAS  Google Scholar 

  • Allahverdiyev TI, Talai JM, Huseynova IM et al (2015) Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. Ekin J Crop Breed Gene 1:50–62

    Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 1:326–345

    Article  CAS  Google Scholar 

  • Al-Naggar AM, Abd El-Shafi MA, El-Shal MH et al (2020) Evaluation of Egyptian wheat landraces (Triticum aestivum L.) for drought tolerance, agronomic, grain yield and quality traits. Plant Arch 1:3487–3504

    Google Scholar 

  • Armstrong J, Armstrong W (1988) Phragmites australis–a preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytol 4:373–382

    Article  Google Scholar 

  • Ashkavand P, Zarafshar M, Tabari M et al (2018) Application of SiO2 nanoparticles as pretreatment alleviates the impact of drought on the physiological performance of Prunus mahaleb (Rosaceae). Boletín de la Sociedad Argentina de Botánica 2:207–219

    Article  Google Scholar 

  • Aslan D, Zencirci N, ETÖZ M et al (2016a) Bread wheat responds salt stress better than einkorn wheat does during germination. Turk J Agric For 5:783–794

    Article  CAS  Google Scholar 

  • Aslan D, Ordu B, Zencirci N (2016b) Einkorn wheat (Triticum monococcum spp. monococcum) tolerates cold stress better than bread wheat during germination. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 2:182–192. [In Turkish]

    Google Scholar 

  • Ayala L, Van Ginkel M, Khairallah M et al (2001) Expression of Thinopyrum intermedium-derived Barley yellow dwarf virus resistance in elite bread wheat backgrounds. Phytopathology 1:55–62

    Article  Google Scholar 

  • Baloch F, Alsaleh A, Shahid M, Çiftçi V, et al (2017) A Whole Genome DArTseq and SNP Analysis for Genetic Diversity Assessment in Durum Wheat from Central Fertile Crescent. Public Library of Science PLoS ONE 12(1):e0167821. https://doi.org/10.1371/journal.pone.0167821

  • Bhattacharya S (2017) Deadly new wheat disease threatens Europe’s crops. Nature 542:7640

    Article  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Aust J Agric 11:1159–1168

    Article  Google Scholar 

  • Budak H, Kantar M, Yucebilgili Kurtoglu K (2013) Drought tolerance in modern and wild wheat. Sci World J 2013:1–17

    Article  Google Scholar 

  • Cao J, Xu Z, Fan X et al (2020) Genetic mapping and utilization analysis of stripe rust resistance genes in a Tibetan wheat (Triticum aestivum L.) landrace Qubaichun. Genet Resour Crop Evol 1–11 , 67(7), 1765–1775

    Google Scholar 

  • Cavanagh CR, Chao S, Wang S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli S, Acevedo E, Grando S (1991) Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes. Euphytica 2:169–185

    Article  Google Scholar 

  • Chuang WP, Rojas LM, Khalaf LK et al (2017) Wheat genotypes with combined resistance to wheat curl mite, wheat streak mosaic virus, wheat mosaic virus, and triticum mosaic virus. J Econ Entomol 2:711–718

    Google Scholar 

  • Collaku A, Harrison SA (2002) Losses in wheat due to waterlogging. J Crop Sci 2:444–450

    Article  Google Scholar 

  • Comastri A, Janni M, Simmonds J et al (2018) Heat in wheat: exploit reverse genetic techniques to discover new alleles within the Triticum durum sHsp26 family. Front Plant Sci 9:1337

    Article  PubMed  PubMed Central  Google Scholar 

  • Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Leonardis AM, Fragasso M, Beleggia R et al (2015) Effects of heat stress on metabolite accumulation and composition, and nutritional properties of durum wheat grain. Int J Mol Sci 16:30382–30404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demir G, Üstün N (1992) Studies on bacterial streak disease (Xanthomonas campestris pv. translucens (Jones et al.) dye.) of wheat and other gramineae. J Turk Phytopathol 21:33–40

    Google Scholar 

  • Denby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 11:547–552

    Article  CAS  Google Scholar 

  • Dwivedi SL, Ceccarelli S, Blair MW et al (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 1:31–42

    Article  CAS  Google Scholar 

  • Edwards MD, Stuber CW, Wendell JF (1987) Molecular marker-facilitated investigation of quantitative trait loci in maize. I.Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hendawy SE, Hu Y, Yakout GM et al (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron 22:243–253

    Article  CAS  Google Scholar 

  • El-Hendawy SE, Hassan WM, Al-Suhaibani NA et al (2017) Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front Plant Sci 8:435

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: Dans Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Intercept Limited, Andover, pp 3–58

    Google Scholar 

  • Feng JY, Wang MN, See DR et al (2018) Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. J Phytopathol 108:737–747

    Article  CAS  Google Scholar 

  • Ferjaoui SM, Barek SB, Bahri B et al (2015) Identification of resistance sources to Septoria tritici blotch in old tunisian durum wheat germplasm applied for the analysis of the Zymoseptoria tritici-durum wheat interaction. J Plant Pathol 97:471–481

    Google Scholar 

  • Figueroa M, Upadhyaya NM, Sperschneider J et al (2016) Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici. Front Plant Sci 7:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueroa M, Hammond-Kosack KE, Solomon PS (2018) A review of wheat diseases a field perspective. Mol Plant Pathol 6:1523–1536

    Article  Google Scholar 

  • Flexas J, Bota J, Loreto F et al (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 3:269–279

    Article  Google Scholar 

  • Ghaneie A, Mehrabi R, Safaie N et al (2012) Genetic variation for resistance to Septoria triticiblotch in Iranian tetraploid wheat landraces. Eur J Plant Pathol 132:191–202

    Article  Google Scholar 

  • Gioia T, Nagel KA, Beleggia R et al (2015) Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization. J Exp Bot 18:5519–5530

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:18 p. https://doi.org/10.1155/2014/701596

    Article  CAS  Google Scholar 

  • Gupta PK, Mir RR, Mohan A et al (2008) Wheat genomics: present status and future prospects. J Plant Genomics 2008:36

    Google Scholar 

  • Guy C, Kaplan F, Kopka J et al (2008) Metabolomics of temperature stress. Physiol Plant 2:220–235

    Google Scholar 

  • Hall MD (2006) Genetic characterization and utilization of multiple Aegilops tauschii derived pest resistance genes in wheat (Doctoral dissertation, Kansas State University). Search K-REx

    Google Scholar 

  • Herzog M, Striker GG, Colmer TD et al (2016) Mechanisms of waterlogging tolerance in wheat a review of root and shoot physiology. Plant Cell Environ 5:1068–1086

    Article  CAS  Google Scholar 

  • Holgado R, Andersson S, Rowe JA et al (2004) First record of Heterodera filipjevi in Norway. Nematol Mediterr 32:205–211

    Google Scholar 

  • Humbroich K (2007) Identification and mapping of resistance genes against soil borne viruses in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). Aachen Shaker 2007:1–125

    Google Scholar 

  • Hurkman WJ, Tanaka CK, Vensel WH et al (2013) Comparative proteomic analysis of the effect of temperature and fertilizer on gliadin and glutenin accumulation in the developing endosperm and flour from Triticum aestivum L. cv. Proteome Sci 11:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imren M, Waeyenberge L, Viaene N et al (2015) Morphological and molecular identification of cereal cyst nematode from eastern Mediterranean region of Turkey. Turk J Agric For 39:91–98

    Article  Google Scholar 

  • Izadi MH, Rabbani J, Emam Y et al (2014) Effects of salinity stress on physiological performance of various wheat and barley cultivars. J Plant Nutr 4:520–531

    Article  CAS  Google Scholar 

  • Jaradat AA (2006) Phenotypic divergence in the meta-population of the Hourani durum wheat landrace. J Food Agric Environ 4:186–191

    Google Scholar 

  • Jiang C, Kan J, Ordon F, Perovic D, & Yang P (2020) Bymovirus-induced yellow mosaic diseases in barley and wheat: viruses, genetic resistances and functional aspects. Theoretical and Applied Genetics, SpinngerLink, 133:1623–1640

    Google Scholar 

  • Johnson R, Lupton FGH (1987) Breeding for disease resistance. In: Wheat breeding, its scientific basis. Chapman and Hall, London, pp 369–424

    Chapter  Google Scholar 

  • Kamal AHM, Kim KH, Shin KH et al (2010) Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Aust J Crop Sci 3:196

    Google Scholar 

  • Kan M, Kucukcongar M, Mourgounov A et al (2016) Wheat landraces production on farm level in Turkey; who is growing in where? Pak J Agric Sci 53:159–169

    Google Scholar 

  • Kandel YR, Glover KD, Osborne LE et al (2015) Mapping quantitative resistance loci for bacterial leaf streak disease in hard red spring wheat using an identity by descent mapping approach. Euphytica 1:53–65

    Article  Google Scholar 

  • Karagöz A (2014) Wheat landraces of Turkey. Emirates J Food Agric 2:149

    Google Scholar 

  • Karagöz A, Zencirci N (2005) Variation in wheat (Triticum spp.) landraces from different altitudes of three regions of Turkey. Genet Resour Crop Evol 52:775–785

    Article  Google Scholar 

  • Karagoz A, Zencirci N, Tan A et al (2010) Conservation and use of plant genetic resources. In: Turkish chambers of agricultural engineers 7th technical congress, vol 1, pp 11–15

    Google Scholar 

  • Knott DR (1989) The wheat rust: breeding for resistance. Springer-Verlag, Berlin/Heidelberg/New York, 201 p

    Book  Google Scholar 

  • Kobayashi F, Takumi S, Kume S et al (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 413:887–895

    Article  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, pp 1–5

    Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 5919:1360–1363

    Article  CAS  Google Scholar 

  • Krattinger SG, Jordan DR, Mace ES et al (2013) Recent emergence of the wheat Lr34 multi-pathogen resistance: insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii. Theor Appl Genet 3:663–672

    Article  CAS  Google Scholar 

  • Lamaoui M, Jemo M, Datla R et al (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larson RI, Atkinson TG (1982) Reaction of wheat to common root rot: linkage of a major gene, Crr, with the centromere of chromosome 5B. Can J Genet Cytol 1:19–25

    Article  Google Scholar 

  • Liu S, Bai G, Lin M et al (2020) Identification of candidate chromosome region of Sbwm1 for soil-borne wheat mosaic virus resistance in wheat. Sci Rep 1:1–11

    Google Scholar 

  • Lobell DB, Sibley A, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Climate Change 3:186–189

    Google Scholar 

  • Lodhi SS, John P, Bux H et al (2018) Resistance potential of Pakistani wheat landrace (Triticum aestivum L.) against stripe rust (Puccinia striiformis) and karnal bunt (Tilletia indica). Pak J Bot 2:801–806

    Google Scholar 

  • Lodhi SS, Maryam S, Rafique K et al (2020) Overview of the prospective strategies for conservation of genomic diversity in wheat landraces. In: Climate change and food security with emphasis on wheat. (Science Direct). Elsevier, pp 293–309. https://doi.org/10.1016/b978-0-12-819527-7.00021-2

    Chapter  Google Scholar 

  • Longin CFH, Sieber AN, Reif JC (2013) Combining frost tolerance, high grain yield and good pasta quality in durum wheat. Plant Breed 132:353–358

    Article  CAS  Google Scholar 

  • Lopes MS, Dreisigacker S, Peña RJ et al (2015) Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet 3:453–464

    Article  CAS  Google Scholar 

  • Lucas S, Dogan E, Budak H (2011) TMPIT1 from wild emmer wheat: first characterisation of a stress-inducible integral membrane protein. Gene 1-2:22–28

    Article  CAS  Google Scholar 

  • Maestri E, Klueva N, Perrotta C et al (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  CAS  PubMed  Google Scholar 

  • Marengo JA, Camargo CC (2008) Surface air temperature trends in Southern Brazil for 1960–2002. Int J Climatol 28:893–904

    Article  Google Scholar 

  • Masmoudi K, Brini F, Feki K et al (2009) Enhancing drought and salinity tolerance in wheat crop grown in the Mediterranean region. J Plant Cell 3:446–449

    Google Scholar 

  • Masood MS, Javaid A, Rabbani MA et al (2005) Phenotypic diversity and trait association in bread wheat (Triticum aestivum L.) landraces from Baluchistan, Pakistan. Pak J Bot 4:949

    Google Scholar 

  • Maulana F, Ayalew H, Anderson JD et al (2018) Genome- wide association mapping of seedling heat tolerance in winter wheat. Front Plant Sci 9:1272

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntosh RA (1998) Euphytica. 1(3):19–34

    Google Scholar 

  • McMullen MP, Adhikari TB (2011) Bacterial leaf streak and black chaff of wheat. NDSU Extension Service, North Dakota State University

    Google Scholar 

  • Mehrotra R, Bhalothia P, Bansal P et al (2014) Abscisic acid and abiotic stress tolerance–different tiers of regulation. J Plant Physiol 7:486–496

    Article  CAS  Google Scholar 

  • Mostek A, Börner A, Badowiec A et al (2015) Alterations in root proteome of salt- sensitive and tolerant barley lines under salt stress conditions. J Plant Physiol 174:166–176

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James R (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Munns R, James RA, Xu B et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Naderi S, Fakheri BA, Maali-Amiri R et al (2020) Tolerance responses in wheat landrace Bolani are related to enhanced metabolic adjustments under drought stress. Plant Physiol Biochem 150:244–253

    Article  CAS  PubMed  Google Scholar 

  • Nelson PE, Toussoun TA, Cook RJ (1981) Fusarium: diseases, biology, and taxonomy. State University Press

    Google Scholar 

  • Newcomb M, Acevedo M, Bockelman HE et al (2013) Field resistance to the Ug99 race group of the stem rust pathogen in spring wheat landraces. Plant Dis 97:882–890

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 197:3–18

    Article  Google Scholar 

  • Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J 2013:610721

    Article  CAS  Google Scholar 

  • Oladosu Y, Rafii MY, Arolu F et al (2020) Submergence tolerance in Rice: review of mechanism, breeding and, future prospects. J MDPI Sustain 4:1632

    Google Scholar 

  • Omariba G, Xu F, Wang M et al (2020) Genome-wide analysis of MicroRnA-related single nucleotide polymorphisms (Snps) in mouse genome. Sci Rep 1:1–9

    Google Scholar 

  • Oyiga BC, Sharma RC, Shen J et al (2016) Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J Agron Crop Sci. https://doi.org/10.1111/jac.12178

  • Pasam RK, Bansal U, Daetwyler HD et al (2017) Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches. Theor Appl Genet 4:777–793

    Article  CAS  Google Scholar 

  • Paull JG et al (1992) Physiological and genetic control of the tolerance of wheat to high concentrations of boron and implications for plant breeding. Plant Soil 146:45–52

    Article  Google Scholar 

  • Pierik R, Testerink C (2014) The art of being flexible: how to escape from shade, salt, and drought. J Plant Physiol 166:5–22

    Article  CAS  Google Scholar 

  • Prasad PV, Bheemanahalli R, Jagadish SK (2017) Field crops and the fear of heat stress pportunities, challenges and future directions. Field Crop Res 200:114–121

    Article  Google Scholar 

  • Qin D, Wu H, Peng H et al (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics 1:432

    Article  CAS  Google Scholar 

  • Rahaie M, Xue GP, Schenk PM (2013) The role of transcription factors in wheat under different abiotic stresses. In: Abiotic stress – plant responses and applications in agriculture. InTech, Rijeka, pp 367–385

    Google Scholar 

  • Ramachandra-Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS et al (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 2:34

    Article  CAS  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 2:177–186

    Google Scholar 

  • Rhodes D, Nadolska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 181–204

    Google Scholar 

  • Ribas-Carbo M, Taylor NL, Giles L et al (2005) Effects of water stress on respiration in soybean leaves. Plant Physiol 1:466–473

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 3:1143–1151

    Article  CAS  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. J Biotechnol 26:115–124

    CAS  Google Scholar 

  • Russell IK et al (2011) Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome level differences in diversity around domestication genes. New Phytol 191:564–578

    Article  PubMed  Google Scholar 

  • Salam A, Khan MS, Ali A et al (2019) Impact of osmotic stress on seed germination and seedling growth of wheat landraces. In: Conference: 9th national conference on “Innovative trends in wheat: way forward to sustainable wheat production” At: at the College of Agriculture University of Sargodha, Pakistan. https://su.edu.pk/events/post/52/CALL-FOR-PAPER

  • Salekdeh GH, Siopongco J, Wade LJ et al (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 9:1131–1145

    Article  Google Scholar 

  • Sallam A, Hamed ES, Hashad M et al (2014) Inheritance of stem diameter and its relationship to heat and drought tolerance in wheat (Triticum aestivum L.). J Plant Breed Crop Sci 1:11–23. https://doi.org/10.5897/JPBCS11.017

    Article  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W et al (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapkota S, Mergoum M, Liu Z (2020) The translucens group of Xanthomonas translucens: complicated and important pathogens causing bacterial leaf streak on cereals. Mol Plant Pathol 3:291–302

    Article  CAS  Google Scholar 

  • Sarwar M, Aslam M, Sarwar S et al (2020) Different nematodes and plasmodiophorids as vectors of plant viruses. In: Applied plant virology. Academic, pp 275–290

    Chapter  Google Scholar 

  • Shavrukov Y, Shamaya N, Baho M et al (2011) Salinity tolerance and Na+ exclusion in wheat: variability, genetics, mapping populations and QTL analysis. Czech J Genet Plant Breed 47:S85–S93

    Article  CAS  Google Scholar 

  • Shubing L, Guihua B, Lin M et al (2020) Identification of candidate chromosome region of Sbwm1 for soil-borne wheat mosaic virus resistance in wheat. Sci Rep 10:1

    CAS  Google Scholar 

  • Singh G (2020) Resistance Screening and QTL Mapping in Wheat and Triticale Against Root-lesion Nematode (Doctoral dissertation, North Dakota State University)

    Google Scholar 

  • Singh S, Singh RP, Huerta-Espino J (2012) Stem rust. Disease resistance in wheat See Ref 85:18–32

    Google Scholar 

  • Singh RP, Hodson DP, Jin Y et al (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 7:872–884

    Article  Google Scholar 

  • Singla J, Krattinger SG (2016) Biotic stress resistance genes in wheat. In: Wrigley CW, Faubion J, Corke H, Seetharaman K (eds) Encyclopedia of food grains. Elsevier, pp 388–392

    Chapter  Google Scholar 

  • Smiley RW, Nicol JM (2009) Nematodes which challenge global wheat production. In: Wheat: science and trade. Wiley-Blackwell, Ames, pp 171–187

    Chapter  Google Scholar 

  • Smiley RW, Yan GP, Handoo ZA (2008) First record of the cereal cyst nematode Heterodera filipjevi in Oregon. Plant Dis 92:1136

    Article  CAS  PubMed  Google Scholar 

  • Spiertz JH, Hamer RJ, Xu H et al (2006) Heat stress in wheat (Triticum aestivum L.): effects on grain growth and quality traits. Eur J Agron 2:89–95

    Article  CAS  Google Scholar 

  • Sthapit JK, Krishnan V, Jiwan D et al (2017) Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035. PLoS One 5:e0177898

    Article  CAS  Google Scholar 

  • Sthapit J, Newcomb M, Bonman JM et al (2014) Genetic diversity for stripe rust resistance in wheat landraces and identification of accessions with resistance to stem rust and stripe rust. Crop Sci 5:2131–2139

    Article  Google Scholar 

  • Su WH, Sun DW (2016) Facilitated wavelength selection and model development for rapid determination of the purity of organic spelt (Triticum spelta L.) flour using spectral imaging. Talanta 155:347–357

    Article  CAS  PubMed  Google Scholar 

  • Suchowilska E, Kandler W, Sulyok M et al (2010) Mycotoxin profiles in the grain of Triticum monococcum, Triticum dicoccum and Triticum spelta after head infection with Fusarium culmorum. J Sci Food Agric 4:556–565

    Google Scholar 

  • Sun QX, Quick JS (1991) Chromosomal locations of genes for heat tolerance in tetraploid wheat. Cereal Res Commun 4:431–437

    Google Scholar 

  • Thompson AL, Smiley RW, Paulitz TC et al (2016) Identification of resistance to Pratylenchus neglectus and Pratylenchus thornei in Iranian landrace accessions of wheat. Crop Sci 2:654–672

    Article  CAS  Google Scholar 

  • Toktay T, Imren M, Ocal A et al (2015) Incidence of cereal cyst nematodes in the East Anatolia region in Turkey. Russ J Nematol 23:29–40

    Google Scholar 

  • Trapero Mozos A, Morris WL et al (2018) Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of heat- shock cognate 70. Plant Biotechnol J 1:197–207

    Article  CAS  Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of Hexaploid wheat. Crop Sci 4:1255

    Article  Google Scholar 

  • Troccoli A, Codianni P (2005) Appropriate seeding rate for einkorn, emmer, and spelt grown under rainfed condition in southern Italy. Eur J Agron 3:293e300. https://doi.org/10.1016/j.eja.2004.04.003

    Article  Google Scholar 

  • Ünlü ES, Bataw S, Aslan Şen D et al (2018) Identification of conserved miRNA molecules in einkorn wheat (Triticum monococcum subsp. monococcum) by using small RNA sequencing analysis. Turk J Biol 6:527

    Article  CAS  Google Scholar 

  • Valluru R, Reynolds MP, Davies WJ et al (2017) Phenotypic and genome wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol 1:271–283

    Article  CAS  Google Scholar 

  • Vandelook F, Bolle N, Van Assche JA (2008) Seasonal dormancy cycles in the biennial Torilis japonica (Apiaceae), a species with morphophysiological dormancy. Seed Sci Res 18:161–171

    Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 7:4–1

    Google Scholar 

  • Vardar Y, Çifcifci EA, Yagdi K (2014) Salinity effects on germination stage of bread and durum wheat cultivars. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 2:127–139

    Article  Google Scholar 

  • Webb CA (2018) Epidemiological factors impacting the development of Wheat streak mosaic virus outbreaks (Doctoral dissertation)

    Google Scholar 

  • Wieser H, Mueller KJ, Koehler P (2009) Studies on the protein composition and baking quality of einkorn lines. Eur Food Res Technol 3:523–532

    Article  CAS  Google Scholar 

  • Witcombe JR, Joshi A, Joshi KD et al (1996) Farmer participatory crop improvement. I. Varietal selection and breeding methods and their impact on biodiversity. Exp Agric 4:445e460. https://doi.org/10.1017/S0014479700001526

    Article  Google Scholar 

  • Xu QT, Yang L, Zhou ZQ et al (2013) Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta 5:969–982

    Article  CAS  Google Scholar 

  • Yadav S, Modi P, Dave A et al (2020) Effect of abiotic stress on crops. In: Sustainable crop production. IntechOpen, London

    Google Scholar 

  • Yaman HM, Ordu B, Zencirci N et al (2019) Coupling socioeconomic factors and cultural practices in production of einkorn and emmer wheat species in Turkey. Environ Dev Sustain 22, 8079–8096 (2020). https://doi.org/10.1007/s10668-019-00562-7

  • Zencirci N, Karagoz A (2005) Effect of developmental stages length on yield and some quality traits of Turkish durum wheat (Triticum turgidum L. convar. durum (Desf.) Mackey) landraces: influence of developmental stages length on yield and quality of durum wheat. Genet Crop Evol 6:765–774

    Article  Google Scholar 

  • Zencirci N, Eser V, Baran I (1990) An approach to compare some stability statistics. CRIFC, Ankara. (in Turkish)

    Google Scholar 

  • Zencirci N, Kün E (1996) Variation in landraces of durum wheat (T. turgidum L. conv. durum (Desf.) M.K.) from Turkey. Euphytica. (92):333–339

    Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

  • Zeven AC (1999) The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review. Euphytica 3:181–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shlibak, A.A., Örgeç, M., Zencirci, N. (2021). Wheat Landraces Versus Resistance to Biotic and Abiotic Stresses. In: Zencirci, N., Baloch, F.S., Habyarimana, E., Chung, G. (eds) Wheat Landraces. Springer, Cham. https://doi.org/10.1007/978-3-030-77388-5_10

Download citation

Publish with us

Policies and ethics