Skip to main content

Monoclonal Antibody Form and Function: Manufacturing the Right Antibodies for Treating Drug Abuse

  • Chapter
Drug Addiction

Abstract

Drug abuse continues to be a major national and worldwide problem, and effective treatment strategies are badly needed. Antibodies are promising therapies for the treatment of medical problems caused by drug abuse, with several candidates in preclinical and early clinical trials. Monoclonal antibodies can be designed that have customized affinity and specificity against drugs of abuse, and because antibodies can be designed in various forms, in vivo pharmacokinetic characteristics can be tailored to suit specific clinical applications (eg, long-acting for relapse prevention, or short-acting for overdose). Passive immunization with antibodies against drugs of abuse has several advantages over active immunization, but because large doses of monoclonal antibodies may be needed for each patient, efficient antibody production technology is essential. In this minireview we discuss some of the antibody forms that may be effective clinical treatments for drug abuse, as well as several current and emerging production systems that could bridge the gap from discovery to patient use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pentel P, Malin D. A vaccine for nicotine dependence: targeting the drug rather than the brain. Respiration (Herrlisheim). 2002;69:193-197.

    Article  CAS  Google Scholar 

  2. Hieda Y, Keyler DE, Ennifar S, Fattom A, Pentel PR. Vaccination against nicotine during continued nicotine administration in rats: immunogenicity of the vaccine and effects on nico-tine distribution to brain. Int J Immunopharmacol. 2000;22:809-819.

    Article  CAS  PubMed  Google Scholar 

  3. McClurkan MB, Valentine JL, Arnold L, Owens SM. Disposition of a monoclonal anti-phencyclidine Fab fragment of immunoglobulin G in rats. J Pharmacol Exp Ther. 1993;266:1439-1445.

    CAS  PubMed  Google Scholar 

  4. Valentine JL, Mayersohn M, Wessinger WD, Arnold LW, Owens SM. Antiphencyclidine monoclonal Fab fragments reverse phencyclidine-induced behavioral effects and ataxia in rats. J Pharmacol Exp Ther. 1996;278:709-716.

    CAS  PubMed  Google Scholar 

  5. Byrnes-Blake KA, Laurenzana EM, Carroll FI, et al. Pharmacodynamic mechanisms of mon-oclonal antibody-based antagonism of (+)-methamphetamine in rats. Eur J Pharmacol. 2003;461:119-128.

    Article  CAS  PubMed  Google Scholar 

  6. McMillan DE, Hardwick WC, Li M, Owens SM. Pharmacokinetic antagonism of (+)-meth-amphetamine discrimination by a low-affinity monoclonal anti-methamphetamine antibody. Behav Pharmacol. 2002;13:465-473.

    CAS  PubMed  Google Scholar 

  7. Roskos LK, Davis CG, Schwab GM. The clinical pharmacology of therapeutic monoclonal antibodies. Drug Dev Res. 2004;61:108-120.

    Article  CAS  Google Scholar 

  8. Brambell FW, Hemmings WA, Morris IG. A theoretical model of gamma-globulin catabo-lism. Nature. 1964;203:1352-1354.

    Article  CAS  PubMed  Google Scholar 

  9. Junghans RP. Finally! The Brambell receptor (FcRB). Mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res. 1997;16:29-57.

    Article  CAS  PubMed  Google Scholar 

  10. Ghetie V, Ward ES. Transcytosis and catabolism of antibody. Immunol Res. 2002;25:97-113.

    Article  CAS  PubMed  Google Scholar 

  11. Trang J. Pharmacokinetics and metabolism of therapeutic and diagnostic antibodies. In: Ferraiolo B, Mohler M, Gloff C, eds. Protein Pharmacokinetics and Metabolism. New York, NY: Plenum Press; 1992:223-270.

    Google Scholar 

  12. Weiner LM. Monoclonal antibody therapy of cancer. Semin Oncol. 1999;26:43-51.

    CAS  PubMed  Google Scholar 

  13. Stein KE. Immunogenicity: concepts/issues/concerns. Dev Biol (Basel). 2002;109:15-23.

    CAS  Google Scholar 

  14. Kuus-Reichel K, Grauer LS, Karavodin LM, Knott C, Krusemeier M, Kay NE. Will immuno-genicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin Diagn Lab Immunol. 1994;1:365-372.

    CAS  PubMed  Google Scholar 

  15. King DJ, Byron OD, Mountain A, et al. Expression, purification and characterization of B72.3 Fv fragments. Biochem J. 1993;290:723-729.

    CAS  PubMed  Google Scholar 

  16. Kadokura H, Katzen F, Beckwith J. Protein disulfide bond formation in prokaryotes. Annu Rev Biochem. 2003;72:111-135. DOI: 10.1146/annurev.biochem.72.121801.161459.

    Article  CAS  PubMed  Google Scholar 

  17. Simmons LC, Reilly D, Klimowski L, et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods. 2002;263:133-147.

    Article  CAS  PubMed  Google Scholar 

  18. Venturi M, Seifert C, Hunte C. High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J Mol Biol. 2002;315:1-8.

    Article  CAS  PubMed  Google Scholar 

  19. Cereghino GP, Cereghino JL, Ilgen C, Cregg JM. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol. 2002;13:329-332.

    Article  PubMed  Google Scholar 

  20. Peterson EC, Farrance C, Henry R, Owens SM. Engineering of a single chain antibody for treatment of methamphetamine abuse. 2004 Experimental Biology meeting abstracts [on CD-ROM]. FASEB J. 2004;18.

    Google Scholar 

  21. Damasceno LM, Pla I, Chang HJ, et al. An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif. 2004;37:18-26.

    Article  CAS  PubMed  Google Scholar 

  22. Joosten V, Lokman C, Van Den Hondel CA, Punt PJ. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb Cell Fact. 2003;2:1.

    Article  PubMed  Google Scholar 

  23. Murasugi A, Asami Y, Mera-Kikuchi Y. Production of recombinant human bile salt-stimulated lipase in Pichia pastoris. Protein Expr Purif. 2001;23:282-288.

    Article  CAS  PubMed  Google Scholar 

  24. Ma JK, Drake PM, Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet. 2003;4:794-805.

    Article  CAS  PubMed  Google Scholar 

  25. Gleba Y, Klimyuk V, Marillonnet S. Magnifection—a new platform for expressing recom-binant vaccines in plants. Vaccine. 2005;23:2042-2048.

    Article  CAS  PubMed  Google Scholar 

  26. Gleba Y, Marillonnet S, Klimyuk V. Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol. 2004;7:182-188.

    Article  CAS  PubMed  Google Scholar 

  27. Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol. 2005;23:718-723.

    Article  CAS  PubMed  Google Scholar 

  28. Santi L, Giritch A, Roy CJ, et al. Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system. Proc Natl Acad Sci USA. 2006;103:861-866.

    Article  CAS  PubMed  Google Scholar 

  29. Gils M, Kandzia R, Marillonnet S, Klimyuk V, Gleba Y. High-yield production of authentic human growth hormone using a plant virus-based expression system. Plant Biotechnol J. 2005;3:613-620.

    Article  CAS  PubMed  Google Scholar 

  30. Sharp JM, Doran PM. Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol Bioeng. 2001;73:338-346.

    Article  CAS  PubMed  Google Scholar 

  31. Derouazi M, Girard P, Van Tilborgh F, et al. Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng. 2004;87:537-545.

    Article  CAS  PubMed  Google Scholar 

  32. Baldi L, Muller N, Picasso S, et al. Transient gene expression in suspension HEK-293 cells: application to large-scale protein production. Biotechnol Prog. 2005;21:148-153.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Peterson, E., Owens, S.M., Henry, R.L. (2008). Monoclonal Antibody Form and Function: Manufacturing the Right Antibodies for Treating Drug Abuse. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_5

Download citation

Publish with us

Policies and ethics