Skip to main content

Taurine-Mediated Cardioprotection is Greater When Administered upon Reperfusion than Prior to Ischemia

  • Conference paper
Taurine 7

Abstract

Taurine (TA) administered exogenously before the induction of myocardial ischemia decreases lactic acid production and increases pyruvic acid production during ischemia. It also preserves the activity of GOT, GPT, LDH and CPK during ischemia and enhances recovery of CKMB synthesis as early as 5 minutes after onset of reperfusion. The aim of the study was to determine the optimal conditions for administering TA in order to reduce myocardial ischemia-reperfusion injury. Left ventricular (LV) function, creatine kinase (CK) and lipid peroxide products (LPOP=oxidant stress), as well as the area at risk (AAR), and infarct size (IS) after reperfusion were studied in 3 groups of isolated rat hearts perfused with Krebs Henseleit Buffer (KHB)-stabilized isolated rat hearts that were subjected to 20 minutes(’) of global ischemia at 37ô followed by 60′ of reperfusion with KHB: Hearts were perfused with TA containing KHB for 10′ just prior to ischemia or during the first 10’ of reperfusion. Conclusion:Taurine before ischemia or during reperfusion was equally effective in preventing infarction; however, when administered at reperfusion, taurine reduced lipid peroxidation and myocardial injury more, thereby providing improved early recovery of function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akizuki S, Yoshida S, Chambers DE, Eddy LJ, Parmley LF, Yellon DM, Downey JM (1985) Infarct size limitation by the xanthine oxidase inhibitor, allopurinol, in closed chest dogs with small infarcts. Cardiovasc Res 19:686–692

    Article  PubMed  CAS  Google Scholar 

  • Bagchi D, Wetscher GJ, Bagchi M, Hinder PR, Perdikis G, Stohs SJ, Hinder RA, Das DK (1997) Interrelationship between cellular calcium homeostasis and free radical generation in myocardial reperfusion injury. Chem Biol Interact 104:65–85

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Article  PubMed  CAS  Google Scholar 

  • Beutner G, Rück A, Riede B, Brdiczka D (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368:7–18

    CAS  Google Scholar 

  • Biasetti M, Dawson R Jr (2002) Effects of sulfur containing amino acids on iron and nitric oxide stimulated catecholamine oxidation. Amino Acids 22:351–368

    Article  PubMed  CAS  Google Scholar 

  • Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci USA 99:10156–10161

    Article  PubMed  CAS  Google Scholar 

  • Forgione MA, Cap A, Liao R, Moldovan NI, Eberhardt RT, Lim CC, Jones J, Goldschmidt-Clermont PJ, Loscalzo J (2002) Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac functionand structure. Circulation 106: 1154–1158

    Article  PubMed  CAS  Google Scholar 

  • Franconi F, Stendardi I, Failli P, Matucci R, Baccaro C, Montorsi L, BandinelliR, Giotti A (1985) The protective effects of taurine on hypoxia (performed in the absence of glucose) and on reoxygenation (in the presence of glucose) in guineapig heart. Biochem Pharmacol 34: 2611–2615

    Article  PubMed  CAS  Google Scholar 

  • Grace PA (1994) Ischaemia-reperfusion injury. Br J Surg 81:637–647

    Article  PubMed  CAS  Google Scholar 

  • Grisham MB, Granger DN (1989) Metabolic sources of reactive oxygen metabolites during oxidant stress and ischemia with reperfusion. Clin Chest Med 10:71–81

    PubMed  CAS  Google Scholar 

  • Hansen SH, Andersen ML, Birkedal H, Cornett C, Wibrand F (2006) The important role of taurine in oxidative metabolism. Adv Exp Med Biol 583:129–135

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Cusack BJ, Olson RD, Stroo W, Azuma J, Hamaguchi T, Schaffer SW (1990) Taurine deficiency and doxorubicin: interaction with the cardiac sarcolemmal calcium pump. Biochem Pharmacol 39:745–751

    Article  PubMed  CAS  Google Scholar 

  • Hill MF, Singal PK (1997) Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction Circulation 96:2414–2420

    CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Jaskille A, Koustova E, Rhee P, Britten-Webb J, Chen H, Valeri CR, Kirkpatrick JR, Alam HB (2006). Hepatic apoptosis after hemorrhagic shock inrats can be reduced through modifications of conventional Ringer’s solution. J Am Coll Surg 202:25–35

    Article  PubMed  Google Scholar 

  • Kaplan B, Aricioglu A, Erbas D, Erbas S, Turkozkan N (1993) The effects of taurine on perfused heart muscle malondialdehyde levels. Gen Pharmacol 24:1411–1413

    PubMed  CAS  Google Scholar 

  • Köhler C, Gahm A, Noma T, Nakazawa A, Orrenius S, Zhivotovsky B (1999) Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett 447:10–12

    Article  PubMed  Google Scholar 

  • Koufen P, Rück A, Brdiczka D, Wendt S, Wallimann T, Stark G (1999) Free radical-induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK). Biochem J 344 Pt 2:413–417

    Google Scholar 

  • Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B (1997) The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem 174:159–165

    Article  PubMed  CAS  Google Scholar 

  • Li PA, Liu GJ, He QP, Floyd RA, Siesjö BK (1999) Production of hydroxyl free radical by brain tissues in hyperglycemic rats subjected to transient forebrain ischemia. Free Radic Biol Med 27:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Li PA, Uchino H, Elmér E, Siesjö BK (1997) Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia. Brain Res 753:133–140

    Article  PubMed  CAS  Google Scholar 

  • Li S, Li X, Rozanski GJ (2003) Regulation of glutathione in cardiac myocytes. J Mol Cell Cardiol 35:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Lombardini JB (1996) Taurine depletion in the intact animal stimulates in vitro phosphorylation of an approximately 44-kDa protein present in the mitochondrial fraction of the rat heart. J Mol Cell Cardiol 28:1957–1961

    Article  PubMed  CAS  Google Scholar 

  • Milei J, Ferreira R, Llesuy S, Forcada P, Covarrubias J, Boveris A (1992) Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am Heart J 123:339–345

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto TA, Miyamoto KJ (1999) Does adenosine release taurine in the A1 receptor-rich hippocampus? J Anesth 13:94–98

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto TA, Miyamoto KJ, Miyamoto MR (2006) Systemically administered taurine Part III. Pharmacologically activated mechanisms. Adv Exp Med Biol 583:335–351

    Google Scholar 

  • W, Miyamoto TA, Yamazaki K, Miwa S, Takaba K, Ikeda T, Komeda M (2006a) Regionally perfused taurine. Part I. Minimizes lactic acidosis and preserves CKMB and myocardial contractility after ischemia/reperfusion. Adv Exp Med Biol 583:271–278

    Article  Google Scholar 

  • Oriyanhan W, Miyamoto TA, Yamazaki K, Miwa S, Takaba K, Ikeda T, Komeda M (2006b) Regionally perfused taurine. Part II Taurine addition to St Thomas solution prevents DNA oxidative stress and maintains contractile function. Adv Exp Med Biol 583:279–288

    Article  Google Scholar 

  • Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109:1877–1885

    Article  PubMed  CAS  Google Scholar 

  • Öz E, Erbas D, Gelir E, Aricioglu A (1999) Taurine and calcium interaction in protection of myocardium exposed to ischemic reperfusion injury. Gen Pharmacol 33(2):137–141

    Article  Google Scholar 

  • Poli G, Albano E, Dianzani MU (1987) The role of lipid peroxidation in liver damage. Chem Phys Lipids 45:117–142

    Article  PubMed  CAS  Google Scholar 

  • Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3:836–847

    Article  PubMed  CAS  Google Scholar 

  • Stachowiak O, Dolder M, Wallimann T, Richter C (1998) Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273:16694–16699

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Ohyabu Y, Takahashi K, Solodushko V, Takatani T, Itoh T, Schaffer SW, Azuma J (2003) Taurine renders the cell resistant to ischemiainduced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 41:726–733

    Article  PubMed  CAS  Google Scholar 

  • Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J (2004a) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287:C949–953

    Article  Google Scholar 

  • Takatani T, Takahashi K, Uozumi Y, Matsuda T, Ito T, Schaffer SW, Fujio Y, Azuma J (2004b) Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biophys Res Commun 316:484–489

    Article  CAS  Google Scholar 

  • Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Fushiki S, Fliss H, Nakagawa M (2003) Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res 59:428–440

    Article  PubMed  CAS  Google Scholar 

  • Thatte HS, Rhee JH, Zagarins SE, Treanor PR, Birjiniuk V, Crittenden MD, Khuri SF (2004) Acidosis-induced apoptosis in human and porcine heart. Ann Thorac Surg 77:1376–1383

    Article  PubMed  Google Scholar 

  • Ueno T, Iguro Y, Yotsumoto G, Fukumoto Y, Nakamura K, Miyamoto TA, Sakata R (2007) Taurine at early reperfusion significantly reduces myocardial damage and preserves cardiac function in the isolated rat heart. Resuscitation 73:287–295

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, O’Gorman E, Rück A, Brdiczka D (1998) Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors 8:229–234

    Article  PubMed  CAS  Google Scholar 

  • Whalen DA Jr, Hamilton DG, Ganote CE, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Pathol 74:381–397

    Google Scholar 

  • Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, Rhee SG (2003) Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300:653–656

    Article  PubMed  CAS  Google Scholar 

  • Wright CE, Tallan HH, Lin YY, Gaull GE (1986) Taurine: biological update. Annu Rev Biochem 55:427–453

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Miyamoto, TA. et al. (2009). Taurine-Mediated Cardioprotection is Greater When Administered upon Reperfusion than Prior to Ischemia. In: Azuma, J., Schaffer, S.W., Ito, T. (eds) Taurine 7. Advances in Experimental Medicine and Biology, vol 643. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75681-3_3

Download citation

Publish with us

Policies and ethics