Skip to main content

Otoacoustic Emissions in Amphibians, Lepidosaurs, and Archosaurs

  • Chapter
Active Processes and Otoacoustic Emissions in Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 30))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker RJ, Wilson JP, Whitehead ML (1989) Otoacoustic evidence for nonlinear behaviour in frog’s hearing: suppression but no distortion products. In: Wilson P, Kemp DT (eds), Cochlear Mechanisms: Structure, function and Models. New York: Plenum Press, pp. 349–356.

    Google Scholar 

  • Benedix Jr JH, Pedemonte M, Velluti R, and Narins PM (1994) Temperature dependence of two-tone rate suppression in the northern leopard frog, Rana pipiens pipiens. J Acoust Soc Am 96:2738–2745.

    PubMed  Google Scholar 

  • Bialek W, Wit HP (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys Let 104A:173–178.

    Google Scholar 

  • Brix J, Manley GA (1994) Mechanical and electromechanical properties of the hair-cell bundles of isolated and cultured hair cells of the chicken. Hear Res 76:147–157.

    PubMed  CAS  Google Scholar 

  • Brown AM, Kemp DT (1984) Suppressibility of the 2f 1 − fs stimulated acoustic emissions in gerbil and man. Hear Res 13:29–37.

    PubMed  CAS  Google Scholar 

  • Burkard R, Salvi R, Chen L (1996) 2f1 − f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level. Audiol Neurootol 1996 1:197–213.

    Article  CAS  Google Scholar 

  • Capranica RR, Moffat AJM (1975) Selectivity of the peripheral auditory system of spadefoot toads (Scaphiopus couchi) for sounds of biological significance. J Comp Physiol 100:231–249.

    Google Scholar 

  • Capranica RR, Moffat AJM (1980) Nonlinear properties of the peripheral auditory system of anurans. In: A. N. Popper and R. R. Fay (eds), Comparative Studies of Hearing in Vertebrates. Berlin: Springer-Verlag, pp. 139–165.

    Google Scholar 

  • Capranica RR, Moffat, AJM (1983) Neurobehavioural correlates of sound communication in anurans. In: Ewert JP, Capranica RR, Ingle DJ (eds), Advances in Vertebrate Neuroethology. New York: Plenum Press, pp. 701–730.

    Google Scholar 

  • Carroll RL (1988) Vertebrate Paleontology and Evolution. New York: Freeman.

    Google Scholar 

  • Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    PubMed  CAS  Google Scholar 

  • Ehret G, Capranica RR (1980) Masking patterns and filter characteristics of auditory nerve fibers in the green treefrog (Hyla cinerea). J Comp Physiol 141:1–12.

    Google Scholar 

  • Evans EF (1975) The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea. Audiology 14:419–442.

    PubMed  CAS  Google Scholar 

  • Fischer FP (1994) Quantitative TEM analysis of the barn owl basilar papilla. Hear Res 73:1–15.

    PubMed  CAS  Google Scholar 

  • Fox JH (1995) Morphological correlates of auditory sensitivity in anuran amphibians. Brain Behav Evol 45:327–338.

    PubMed  CAS  Google Scholar 

  • Frishkopf LS, Flock Å (1974) Ultrastructure of the basilar papilla, an auditory organ in the bullfrog. Acta Otolaryngol 77:176–184.

    Google Scholar 

  • Gallo L (1997) Otoakustische Emissionen bei Reptilien. Doctoral dissertation, Technische Universität München.

    Google Scholar 

  • Gleich O, Manley GA (2000) The hearing organ of birds and Crocodilia. In: Comparative Hearing: Birds and Reptiles, Dooling R, Popper AN, Fay RR (eds) Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 70–138.

    Google Scholar 

  • Gleich O, Fischer FP, Köppl C, Manley GA (2004) Hearing organ evolution and specialization: Archosaurs. In: Manley GA, Popper A, Fay RR (eds) Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 224–255.

    Google Scholar 

  • Harel N, Kakigi A, Hirakawa H, Mount RJ, Harrsion RV (1997) The effects of anesthesia on otoacoustic emissions. Hear Res 110:25–33.

    PubMed  CAS  Google Scholar 

  • He DZZ, Beisel KW, Chen L, Ding DL, Jia S, Fritzsch B, Salvi R (2003) Chick hair cells do not exhibit voltage-dependent somatic motility. J Physiol 546:511–520.

    PubMed  CAS  Google Scholar 

  • Hetherington TE, Lindquist ED (1999) Lung-based hearing in an “earless” anuran amphibian. J Comp Physiol A 184:395–401.

    Google Scholar 

  • Hubbard AE, Mountain DC (1983) Alternating current delivered into the scala media alters sound pressure at the eardrum. Science 222:510–512.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832–836.

    PubMed  CAS  Google Scholar 

  • Kettembeil S, Manley GA, Siegl E (1995) Distortion-product otoacoustic emissions and their anaesthesia sensitivity in the European starling and the chicken. Hear Res 86:47–62.

    PubMed  CAS  Google Scholar 

  • Klinke R, Smolders J (1984) Hearing mecanisms in caiman and pigeon. In: Bolis L, Keynes R, Maddrell S (eds) Comparative Physiology of Sensory Systems. Cambridge, UK: Cambridge University Press, pp. 195–211.

    Google Scholar 

  • Klinke R, Smolders JWTh (1993) Performance of the avian inner ear, In: Allum JHJ, Allum-Mecklenburg DJ, Harris FP, Probst R. (eds) Progress in Brain Research, Vol. 97, pp. 31–43.

    Google Scholar 

  • Knight RD, Kemp DT (2000) Indications of different distortion product otoacoustic emission mechanisms from a detailed f1, f2 area study. J Acoust Soc Am 107:457–473.

    PubMed  CAS  Google Scholar 

  • Köppl C (1995) Otoacoustic emissions as indicators of active cochlear mechanics: a primitive property of vertebrate auditory organs. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds), Advances in Hearing Research. Hackensack, NJ: World Scientific, pp. 200–209.

    Google Scholar 

  • Köppl C (1997) Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurophysiol 77:364–377.

    PubMed  Google Scholar 

  • Köppl C, Authier S (1995) Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko. Hear Res 82:14–25.

    PubMed  Google Scholar 

  • Köppl C, Manley GA (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Fay, RR, Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 489–509.

    Google Scholar 

  • Köppl C, Manley GA (1993a) Spontaneous otoacoustic emissions in the bobtail lizard. I: General characteristics. Hear Res 71:157–169.

    Google Scholar 

  • Köppl C, Manley GA (1993b) Distortion-product otoacoustic emissions in the bobtail lizard. II: Suppression tuning characteristics. J Acoust Soc Am 93:2834–2844.

    Google Scholar 

  • Köppl C, Manley GA (1994) Spontaneous otoacoustic emissions in the bobtail lizard. II: Interactions with external tones. Hear Res 72:159–170.

    PubMed  Google Scholar 

  • Köppl C, Manley GA (2000) Anatomy of the cochlea and physiology of auditory afferents in lizards. In: Manley GA, Fastl H, Kössl M, Oeckinghaus H, Klump GM (eds), Auditory Worlds: Sensory Analysis and Perception in Animals and Man. Weinheim: Wiley-VCH, pp. 52–59.

    Google Scholar 

  • Köppl C, Yates GK (1999) Coding of sound pressure level in the barn owl’s auditory nerve. J Neurosci 19:9674–9686.

    PubMed  Google Scholar 

  • Köppl C, Manley GA, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: V. Seasonal effects of anesthesia. J Comp Physiol A 167:139–144.

    Google Scholar 

  • Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol A 171:695–704.

    Google Scholar 

  • Köppl C, Yates GK, Manley GA (1997) The mechanics of the avian cochlea: Rate-intensity functions of auditory-nerve fibres in the emu. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR (eds) Diversity in Auditory Mechanics. Singapore: World Scientific, pp. 76–82.

    Google Scholar 

  • Köppl C, Klump GM, Taschenberger G, Dyson M, Manley GA (1998) The auditory fovea of the barn owl—no correlation with enhanced frequency resolution. In: Palmer AR, Rees A, Summerfield AQ, Meddis R, (eds) Psychophysical and Physiological Advances in Hearing. London: Whurr, pp. 153–159.

    Google Scholar 

  • Köppl C, Forge A, Manley GA (2003) No correlates for somatic motility in freeze-fractured hair-cell membranes of lizards and birds. In: Gummer AW, Dalhoff E, Nowotny M, Scherer MP (eds) Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 185–186.

    Google Scholar 

  • Köppl C, Forge A, Manley GA (2004) Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility. J Comp Neurol 479:149–155.

    PubMed  Google Scholar 

  • Kummer P, Janssen T, Arnold W (1995) Suppression tuning characteristics of the 2f 1f 2 distortion-product otoacoustic emission in humans. J Acoust Soc Am 98:197–210.

    PubMed  CAS  Google Scholar 

  • Lee, M.S.Y. (1998) Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biol J Linn Soc 65:369–453.

    Google Scholar 

  • Lewis ER (1981) Suggested evolution of tonotopic organization in the frog amphibian papilla. Neurosci Let 21:131–136.

    CAS  Google Scholar 

  • Lewis ER (1984) On the frog amphibian papilla. Scan Electr Microsc IV:1899–1913.

    Google Scholar 

  • Lewis ER, Leverenz EL, Koyama H (1982) The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane. J Comp Physiol 145:437–445.

    Google Scholar 

  • Lombard RE, Straughan, IR (1974) Functional aspects of anuran middle ear structures. J Exp Biol 61:71–93.

    PubMed  CAS  Google Scholar 

  • Lombard RE, Lewis ER, Narins PM (1999) The acoustic periphery of amphibians. In: Fay RR, Narins PM (eds) Comparative Hearing: Fish and Amphibians. Berlin: Springer-Verlag, pp. 101–154.

    Google Scholar 

  • Long GR, Van Dijk P, Wit HP (1996) Temperature dependence of spontaneous otoacoustic emissions in the edible frog (Rana esculenta). Hear Res 98:22–28.

    PubMed  CAS  Google Scholar 

  • Maat B, Wit HP, Van Dijk P (2000) Noise-evoked otoacoustic emissions in humans. J Acoust Soc Am 108:2272–2280.

    PubMed  CAS  Google Scholar 

  • Manley GA (1979) Preferred intervals in the spontaneous activity of primary auditory neurones. Die Naturwiss 66:582–583.

    CAS  Google Scholar 

  • Manley GA (1986) The evolution of the mechanisms of frequency selectivity in vertebrates. In: Moore B, Patterson R (eds) Auditory Frequency Selectivity. New York: Plenum Press, pp. 63–72.

    Google Scholar 

  • Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Manley GA (1995) The avian hearing organ: a status report. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research. Singapore: World Scientific, pp. 219–229.

    Google Scholar 

  • Manley GA (1997) Diversity in hearing-organ structure and the characteristics of spontaneous otoacoustic emissions in lizards. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR (eds) Diversity in Auditory Mechanics. Singapore: World Scientific, pp. 32–38.

    Google Scholar 

  • Manley GA (2000a) Do non-mammals have a cochlear amplifier? In: Wada H, Takasaka T, Ohyama K, Ikeda K, Koike T (eds) Recent Developments in Auditory Mechanics. Singapore: World Scientific, pp. 499–505.

    Google Scholar 

  • Manley GA (2000b) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97:11736–11743.

    CAS  Google Scholar 

  • Manley GA (2000c) Otoacoustic emissions in lizards In: Manley, GA, Fastl H, Kössl M, Oeckinghaus H, Klump GM (eds) Auditory Worlds: Sensory Analysis and Perception in Animals and Man. Weinheim: Wiley-VCH, pp. 93–102.

    Google Scholar 

  • Manley GA (2000d) The hearing organs of lizards. In: Dooling R, Popper AN, Fay RR (eds) Comparative Hearing: Birds and Reptiles. New York: Springer, pp. 139–196.

    Google Scholar 

  • Manley GA (2001) Evidence for an active process and a cochlear amplifier in non-mammals. J Neurophysiol 86:541–549.

    PubMed  CAS  Google Scholar 

  • Manley GA (2002) Evolution of structure and function of the hearing organ of lizards. J Neurobiol 53:202–211.

    PubMed  Google Scholar 

  • Manley GA (2003) The tectorial membrane stabilizes spontaneous otoacoustic emissions. In: Gummer AW, Dalhoff E, Nowotny M, Scherer MP (eds) Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 480–487.

    Google Scholar 

  • Manley GA (2004a) The lizard basilar papilla and its evolution. In: Manley GA, Popper A, Fay RR (eds), Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 200–223.

    Google Scholar 

  • Manley GA (2004b) Spontaneous otoacoustic emissions in monitor lizards. Hear Res 189:41–57.

    Google Scholar 

  • Manley G. A (2006a) Spontaneous otoacoustic emissions in lizards, air pressure effects on them and the question of point sources and global standing waves. In: Nuttall, A, Ren T, Gillespie, P, Grosh, K, de Boer, E (eds) Auditory Mechanisms: Processes and Models. Singapore: World Scientific. pp. 369–376.

    Google Scholar 

  • Manley, G. A. (2006b) Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with papillae. Hearing Research 212, 33–47.

    Google Scholar 

  • Manley GA, Clack JA (2004) An outline of the evolution of vertebrate hearing organs. In: Manley GA, Popper A, Fay RR (eds) Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 1–26.

    Google Scholar 

  • Manley GA, Gallo L (1997) Otoacoustic emissions, hair cells and myosin motors. J Acoust Soc Am 102:1049–1055.

    PubMed  CAS  Google Scholar 

  • Manley GA, Gleich O (1984) Avian primary auditory neurons: the relationship between characteristic frequency and preferred intervals. Die Naturwiss 71:592–594.

    CAS  Google Scholar 

  • Manley GA, Gleich O (1992) Evolution and specialization of function in the avian auditory periphery. In: Fay RR Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 561–580.

    Google Scholar 

  • Manley GA, Kirk D (2002) The influence of injected ac and dc current on spontaneous otoacoustic emissions in the bobtail lizard. J Assoc Res Otolaryngol 3:200–208.

    PubMed  Google Scholar 

  • Manley GA, Köppl C (1992) A quantitative comparison of peripheral tuning measures: Primary afferent tuning curves versus suppression tuning curves of spontaneous and distortion-product otoacoustic emissions. In: Cazals Y, Demany L, Horner K (eds) Auditory Physiology and Perception. Oxford: Pergamon, pp. 151–157.

    Google Scholar 

  • Manley GA, Köppl C (1994) Spontaneous otoacoustic emissions in the bobtail lizard. III: Temperature effects. Hear Res 72:171–180.

    CAS  Google Scholar 

  • Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opin Neurobiol 8:468–474.

    PubMed  CAS  Google Scholar 

  • Manley GA, Gleich O, Leppelsack HJ, Oeckinghaus H (1985) Activity patterns of cochlear ganglion neurons. J Comp Physiol A 157:161–181.

    PubMed  CAS  Google Scholar 

  • Manley GA, Schulze M, Oeckinghaus H (1987) Otoacoustic emissions in a song bird. Hear Res 26:257–266.

    PubMed  CAS  Google Scholar 

  • Manley GA, Yates G, Köppl C (1988) Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua. Hear Res 33:181–190.

    PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Yates GK (1989) Micromechanical basis of high-frequency tuning in the bobtail lizard. In: Wilson JP, Kemp D (eds) Mechanics of Hearing. New York: Plenum Press, pp. 143–150.

    Google Scholar 

  • Manley GA, Köppl C, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: I. Frequency tuning of auditory-nerve fibres. J Comp Physiol A 167:89–99.

    Article  Google Scholar 

  • Manley GA, Kaiser A, Brix J, Gleich O (1991) Activity patterns of primary auditory-nerve fibres in chickens: development of fundamental properties. Hear Res 57:1–15.

    PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Johnstone BM (1993) Distortion-product otoacoustic emissions in the bobtail lizard: I: General characteristics. J Acoust Soc Am 93:2820–2833.

    Google Scholar 

  • Manley GA, Gallo L, Köppl C (1996) Spontaneous otoacoustic emissions in two gecko species, Gekko gecko and Eublepharis macularius. J Acoust Soc Am 99: 1588–1603.

    PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Yates GK (1997) Activity of primary auditory neurones in the cochlear ganglion of the Emu Dromaius novaehollandiae: spontaneous discharge, frequency tuning and phase locking. J Acoust Soc Am 101:1560–1573.

    PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Sneary M (1999) Reversed tonotopic map of the basilar papilla in Gekko gecko. Hear Res 131:107–116.

    PubMed  CAS  Google Scholar 

  • Manley GA, Kirk D, Köppl C, Yates GK (2001) In-vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. Proc Natl Acad Sci USA 98:2826–2831.

    PubMed  CAS  Google Scholar 

  • Meenderink SWF, van Dijk P (2004) Level dependence of distortion product otoacoustic emissions in the leopard frog, Rana pipiens pipiens. Hear Res 192:107–118.

    PubMed  Google Scholar 

  • Meenderink SWF, van Dijk P (2005) Characteristics of distortion product otoacoustic emissions in the frog from L_1, L_2-maps. J Acoust Soc Am 118, 279–286.

    PubMed  Google Scholar 

  • Meenderink SW, van Dijk P (2006) Temperature dependence of anuran distortion product otoacoustic emissions J. Assoc Res otolaryngol. 2006 Sep; 7(3): 246–52. on distortion product otoacoustic emissions in the frog. Hear Res In press

    Google Scholar 

  • Meenderink SWF, Narins PM, Van Dijk P (2005a) Detailed f_1, f_2 area study of distortion product otoacoustic emissions in the frog. JARO 6:37–47.

    Google Scholar 

  • Meenderink SWF, Van Dijk P, Narins PM (2005b) Comparison between distortion product otoacoustic emissions and nerve fiber responses from the basilar papilla of the frog. J Acoust Soc Am 117:3165–3173.

    Google Scholar 

  • Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 169–204.

    Google Scholar 

  • Miller MR (1985) Quantitative studies of auditory hair cells and nerves in lizards. J Comp Neurol 232:1–24.

    PubMed  CAS  Google Scholar 

  • Miller MR (1992) The evolutionary implications of the structural variations in the auditory papilla of lizards. In: Webster DB, Fay RR, Popper AN (eds), The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 463–487.

    Google Scholar 

  • Norton SJ, Rubel EW (1990) Active and passive components in mammalian and avian ears, In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds), The Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 219–226.

    Google Scholar 

  • Ohyama K, Wada H, Kobayashi T, Takasaka T (1991) Spontaneous otoacoustic emissions in the guinea pig. Hear Res 56:111–121.

    PubMed  CAS  Google Scholar 

  • Ohyama K, Sato T, Wada H, Takasaka T (1992) Frequency instability of the spontaneous otoacoustic emissions in the guinea pig. Abstracts of the 15th Midwinter Meeting, Association for Research in Otolaryngology, p. 150.

    Google Scholar 

  • Palmer AR, Wilson JP (1982) Spontaneous and evoked acoustic emissions in the frog Rana esculenta. J Physiol 324:66P.

    Google Scholar 

  • Pitchford S, Ashmore JF (1987) An electrical resonance in hair cells of the amphibian papilla of the frog Rana temporaria. Hear Res 27:75–83.

    PubMed  CAS  Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067.

    PubMed  CAS  Google Scholar 

  • Purgue AP, Narins PM (2000a) Mechanics of the inner ear of the bullfrog (Rana catesbeiana): the contact membranes and the periotic canal. J Comp Physol A 186:481–488.

    CAS  Google Scholar 

  • Purgue AP, Narins PM (2000b) A model for energy flow in the inner ear of the bullfrog (Rana catesbeiana). J Comp Physiol A 186:489–495.

    CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2000) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20:7131–7142.

    PubMed  CAS  Google Scholar 

  • Rice SO (1954) Mathematical analysis of random noise. In: Wax N (ed), Selected Papers on Noise and Stochastic Processes. New York: Dover, pp. 133–294.

    Google Scholar 

  • Ronken DA (1991) Spike discharge properties that are related to the characteristic frequency of single units in the frog auditory nerve. J Acoust Soc Am 90:2428–2440.

    PubMed  CAS  Google Scholar 

  • Rosowski JJ, Peake WT, White JR (1984) Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard. Hear Res 13:141–158.

    PubMed  CAS  Google Scholar 

  • Schloth E, Zwicker E (1983) Mechanical and acoustical influences on spontaneous otoacoustic emissions. Hear Res 11:285–293.

    PubMed  CAS  Google Scholar 

  • Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262.

    PubMed  Google Scholar 

  • Smotherman MS, Narins PM (1999) The electrical properties of auditory hair cells in the frog amphibian papilla. J Neurosci 19:5275–5292.

    PubMed  CAS  Google Scholar 

  • Sun W, Ding D, Reyes S, Salvi RJ. (2000) Effects of AC and DC stimulation on chinchilla SOAE amplitude and frequency. Hear Res 150:137–148.

    PubMed  CAS  Google Scholar 

  • Talmadge C, Long G, Murphy W, Tubis A (1993) New off-line method for detecting spontaneous otoacoustic emissions in human subjects. Hear Res 71:170–182.

    PubMed  CAS  Google Scholar 

  • Taschenberger G, Manley GA (1997) Spontaneous otoacoustic emissions in the barn owl. Hear Res 110:61–76.

    PubMed  CAS  Google Scholar 

  • Taschenberger G, Manley GA (1998) General characteristics and suppression tuning properties of the distortion-product otoacoustic emission 2f 1f 2 in the barn owl. Hear Res 123:183–200.

    PubMed  CAS  Google Scholar 

  • van Dijk P, Manley GA (2001) Distortion product otoacoustic emissions in the tree frog Hyla cinerea. Hear Res 153:14–22.

    PubMed  Google Scholar 

  • van Dijk P, Wit HP (1987) Temperature dependence of frog spontaneous otoacoustic emissions. J Acoust Soc Am 82:2147–2150.

    PubMed  Google Scholar 

  • van Dijk P, Wit HP (1998) Correlated amplitude fluctuations of spontaneous otoacoustic emissions. J Acoust Soc Am 104:336–343.

    PubMed  Google Scholar 

  • van Dijk P, Wit HP, Segenhout JM (1989) Spontaneous otoacoustic emissions in the European edible frog (Rana esculenta): Spectral details and temperature dependence. Hear Res 42:273–282.

    PubMed  Google Scholar 

  • van Dijk P, Narins PM, Wang J (1996a) Spontaneous otoacoustic emissions in seven frog species. Hear Res 101:102–112.

    Google Scholar 

  • van Dijk P, Manley GA, Gallo L, Pavusa A, Taschenberger G (1996b) Statistical properties of spontaneous otoacoustic emissions in one bird and three lizard species. J Acoust Soc Am 100:2220–2227.

    Google Scholar 

  • van Dijk P, Wit HP, Segenhout JH (1997a) Dissecting the frog inner ear with Gaussian noise: I. Application of high-order Wiener-kernel analysis. Hear Res 114:229–242.

    Google Scholar 

  • van Dijk P, Maat A, Wit HP (1997b) Wiener kernel analysis of a noise-evoked otoacoustic emission. Br J Aud 31:473–477.

    Google Scholar 

  • van Dijk P, Manley GA, Gallo L (1998) Correlated amplitude fluctuations of spontaneous otoacoustic emissions in five lizard species. J Acoust Soc Am 104:1559–1564.

    Google Scholar 

  • van Dijk P, Mason MJ, Narins PM (2002) Distortion product otoacoustic emission in frogs: correlation with middle and inner ear properties. Hear Res 173:100–108.

    PubMed  Google Scholar 

  • van Dijk P, Narins PM, Mason MJ (2003) Physiological vulnerability of distortion product otoacoustic emissions from the amphibian ear. J Acoust Soc Am 114:2044–2048.

    PubMed  Google Scholar 

  • Vassilakis PN, Meenderink SWF, Narins PM (2004) Distortion product otoacoustic emissions provide clues to hearing mechanisms in the frog. J Acoust Soc Am 116:3713–3726.

    PubMed  Google Scholar 

  • Wever EG (1978) The Reptile Ear. Princeton: Princeton University Press.

    Google Scholar 

  • Wever EG (1985) The Amphibian Ear. Princeton: Princeton University Press.

    Google Scholar 

  • Whitehead ML, Wilson JP, Baker RJ (1986) The effect of temperature on otoacoustic emission tuning properties. In: Moore BCJ, Patterson RD (eds) Auditory Frequency Selectivity. London: Plenum Press, pp. 39–46.

    Google Scholar 

  • Whitehead ML, Kamal N, Lonsbury-Martin BL, Martin GK (1993) Spontaneous otoacoustic emissions in different racial groups. Scand Audiol 22:3–10.

    PubMed  CAS  Google Scholar 

  • Wilson JP, Baker RJ, Whitehead ML (1990a) Otoacoustic emissions in frogs. Adv Audiol 7:47–56.

    Google Scholar 

  • Wilson JP, Baker RJ, Whitehead ML (1990b) Otoacoustic emission in frogs. In: Grandori F, Cianfrone G, Kemp DT (eds) Cochlear Mechanisms and Otoacoustic Emissions. Basel: Karger, pp. 47–56.

    Google Scholar 

  • Wit HP, Van Dijk P, Segenhout JM (1989a) DC injection alters spontaneous otoacoustic emission frequency in the frog. Hear Res 41:199–204.

    CAS  Google Scholar 

  • Wit HP, Van Dijk P, Segenhout JM (1989b) An electrical correlate of spontaneous otoacoustic emissions in a frog, a preliminary report. In: Wilson JP, Kemp DT (eds) Cochlear Mechanics: Structure, Function, and Models. New York: Plenum Press, pp. 341–347.

    Google Scholar 

  • Wu Y-C, Art JJ, Goodman MB, Fettiplace R (1995) A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells. Prog Biophys Mol Biol 63:131–158.

    PubMed  CAS  Google Scholar 

  • Yates GK, Manley GA C Köppl (2000) Rate-intensity functions in the emu auditory nerve. J Acoust Soc Am 107:2143–2154.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Manley, G.A., Dijk, P.v. (2008). Otoacoustic Emissions in Amphibians, Lepidosaurs, and Archosaurs. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Active Processes and Otoacoustic Emissions in Hearing. Springer Handbook of Auditory Research, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71469-1_7

Download citation

Publish with us

Policies and ethics