Skip to main content

The Ancient Anoxic Biosphere Was Not As We Know It

  • Chapter
Biosphere Origin and Evolution

Abstract

A previously unreported observation is that whereas c. post-2000 Ma sedimentary rocks commonly contain microbially mediated, 13C-depleted carbonate concretions, such features are largely absent in older rocks. Excluding banded iron formations, δ 13C of sedimentary and diagenetic carbonates of the older rocks are ˜ 0 ± 3%; VPDB and are not characteristic of microbially recycled organic matter. We propose that c. pre-2000 Ma the biosphere operated in a different mode compared to the modern. Organic matter remineralisation was predominantly in the anoxic water column and sediment–water interface and rarely within sediments. Isotopically distinctive CO2 and CH4 readily escaped to atmosphere leaving no vestige as diagenetic carbonates. Around c. 2000 Ma, in response to the now oxic near-surface conditions, the anaerobic recycling microorganisms retreated deep into sediments to escape poisonous dioxygen. Redox gradients developed in the sedimentary column and abundant 12C-rich carbonate concretions then formed using recycled organic carbon, as observed in the Phanerozoic world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abell, P.I., McClory, J., Martin, A. and Nisbet, E.G. (1985) Archaean stromatolites from the Ngesi Group, Belingwe Greenstone Belt, Zimbabwe; preservations and stable isotopes—preliminary results. Precambrian Res. 27, 357–383.

    Article  CAS  Google Scholar 

  • Aharon, P. and Liew, T.C. (1992) An assessment of the Precambrian/Cambrian transition events on the basis of carbon isotope records. In: M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy and P.A. Trudinger (Eds), Early Organic Evolution: Implications for Mineral and Energy Resources. Springer, Berlin, pp. 212–223.

    Google Scholar 

  • Altermann, W. and Nelson, D.R. (1998) Sedimentation rates, basin analysis and regional correlations of three Neoarchaean and Palaeoproterozoic sub-basins of the Kaapvaal craton as inferred from precise U–Pb zircon ages from volcaniclastic sediments. Sediment. Geol. 120, 225–256.

    Article  CAS  Google Scholar 

  • Baker, A.J. and Fallick, A.E. (1989) Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water. Nature 337, 352–354.

    Article  CAS  Google Scholar 

  • Baur, M.E., Hayes, J.M., Studley, S.A. and Walter, M.R. (1985) Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. Econ. Geol. 80, 270–282.

    PubMed  CAS  Google Scholar 

  • Bekker, A., Holland, H.D., Wang, P.L., Rumble III, D., Stein, H.J., Hannah, J.L., Coetzee, L.L. and Beukes, N.J. (2004) Dating the rise of atmospheric oxygen. Nature 427, 117–120.

    Article  PubMed  CAS  Google Scholar 

  • Beukes, N.J., Klein, C., Kaufman, A. and Hayes, J.M. (1990) Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an Early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Econ. Geol. 85, 663–690.

    CAS  Google Scholar 

  • Blockley (1990) Iron ore. Geology and Mineral Resources of Western Australia. Geol. Surv. West. Austral. Memoir 3, pp. 679–692.

    Google Scholar 

  • Clout, J.M.F. and Simonson, B.M. (2005) Precambrian iron formations and iron formation-hosted iron ore deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Eds), Economic Geology One Hundredth Anniversary Volume 1905–2005. Soc. Econom. Geol., Littleton, CO, pp. 643–679.

    Google Scholar 

  • Coleman, M.L. (1993) Microbial processes: controls on the shape and composition of carbonate concretions. Mar. Geol. 113, 127–140.

    Article  CAS  Google Scholar 

  • Coleman, M.L. and Raiswell, R. (1981) Carbon, oxygen and sulphur isotope variations in concretions from the upper Lias of N.E. England. Geochim. Cosmochim. Acta 45, 329-340.

    Article  CAS  Google Scholar 

  • Coleman, M.L. and Raiswell, R. (1993) Microbial mineralization of organic matter: mechanism of self-organization and inferred rates of precipitation of diagenetic minerals. Philos. Trans. R. Soc. Lond. A 344, 69–87.

    Article  CAS  Google Scholar 

  • Curtis, C.D., Coleman, M.L. and Love, L.G. (1986) Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochim. Cosmochim. Acta 50, 2321–2334.

    Google Scholar 

  • De Craen, M., Swennen, R., Keppens, E.M., Macaulay, C.I. and Kiriakoulakis, K. (1999) Bacterially meditated formation of carbonate concretions in the Oligocene Boom Clay of Northern Belgium. J. Sediment. Res. 69, 1098–1106.

    Google Scholar 

  • Deines, P. (1992) Mantle carbon: concentration, mode of occurrence, and isotopic composition. In: M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy and P.A. Trudinger (Eds), Early Organic Evolution: Implications for Mineral and Energy Resource. Springer, Berlin, pp. 133–146.

    Google Scholar 

  • Dietrich, R.V. (1997) Carbonate Concretions: A Bibliography. http://www.cst.cmich.edu/users/dieter1rv/concretions/, 64 pp.

  • Donnelly, T.H. and Crick, I.H. (1992) Biological and abiological sulfate reduction in two Northern Australian Proterozoic basins. In: M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy and P.A. Trudinger (Eds), Early Organic Evolution: Implications for Mineral and Energy Resource. Springer, Berlin, pp. 398–407.

    Google Scholar 

  • Fallick, A.E., McConville, P., Boyce, A.J., Burgess, R. and Kelley, S.P. (1992) Laser microprobe stable isotope measurements on geological materials: some experimental considerations (with special reference to δ34S in sulphides). Chem. Geol. 101, 53–61.

    CAS  Google Scholar 

  • Grassineau, N.V., Nisbet, E.G., Fowler, C.M.R., Bickle, M.J., Lowry, D., Chapman, H.J., Mattey, D.P., Abell, P., Yong, J. and Martin, A. (2002) Stable isotopes in the Archaean Belingwe Belt, Zimbabwe; evidence for a diverse microbial mat ecology. In: C.M. Fowler, C.J. Ebinger and C.J. Hawkesworth (Eds), The Early Earth: Physical, Chemical and Biological Development. Geol. Soc. Spec. Publ. 199, pp. 309–328.

    CAS  Google Scholar 

  • Hassler, S.W. (1993) Depositional history of the Main Tuff Interval of the Wittenoom Formation, late Archean–Early Proterozoic Hamersley Group, Western Australia. Precambrian Res. 60, 337–359.

    Article  Google Scholar 

  • Hayes, J.M. and Waldbauer, J.R. (2006) The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. Lond. B 361, 931–950.

    Article  CAS  Google Scholar 

  • Hennessy, J. and Knauth, L.P. (1985) Isotopic variations in dolomite concretions from the Monterey Formation, California. J. Sediment. Petrol. 55, 120–130.

    CAS  Google Scholar 

  • Huston, D.L. and Logan, G.A. (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth's early hydrosphere. Earth Planet. Sci. Lett. 220, 41–45.

    Article  CAS  Google Scholar 

  • Irwin, H., Curtis, C. and Coleman, M. (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic rich sediments. Nature 269, 209–213.

    Google Scholar 

  • Karhu, J.A. and Holland, H.D. (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–879.

    Article  CAS  Google Scholar 

  • Kaufman, A.J., Hayes, J.M. and Klein, C. (1990) Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Geochim. Cosmochim. Acta 54, 3461–3473.

    CAS  Google Scholar 

  • Kelley, S.P. and Fallick, A.E. (1990) High precision spatially resolved analysis of δ34S in sulphides using a laser extraction technique. Geochim. Cosmochim. Acta 54, 883–888.

    Article  CAS  Google Scholar 

  • Krapež, B., Barley, M.E. and Pickard, A.L. (2003) Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50, 979–1011.

    Article  Google Scholar 

  • Kyser, T.K. (1986) Stable isotope variations in the mantle. Rev. Mineral. 16, 141–164.

    Google Scholar 

  • Magaritz, M. (1989) 13C minima follow extinction events: a clue to faunal radiation. Geology 17, 337–340.

    Article  CAS  Google Scholar 

  • McCrea, J.M. (1950) On the isotopic geochemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–857.

    Article  CAS  Google Scholar 

  • Melezhik, V.A. (1992) Palaeoproterozoic Sedimentary and Rock-Forming Basins of the Fennoscandian Shield. Nauka (Science), Leningrad (in Russ.).

    Google Scholar 

  • Melezhik, V.A. and Fallick, A.E. (1996) A widespread positive δ13Ccarb anomaly at around 2.33–2.06 ga on the Fennoscandian Shield: a paradox. Terra Nova 8, 141–157.

    Article  Google Scholar 

  • Melezhik, V.A. and Fallick, A.E. (2003) δ13C and δ18O variations in primary and secondary carbonate phases: several contrasting examples from Palaeoproterozoic 13C-rich dolostones. Chem. Geol. 201, 213–228.

    Article  CAS  Google Scholar 

  • Melezhik, V.A. and Fallick, A.E. (2004) Concretions tell that ancient bugs lived differently. Goldschmidt Conference, Copenhagen, Denmark, June 5–11, 2004. Geochim. Cosmochim Acta, Abstract Volume, A796.

    Google Scholar 

  • Melezhik, V.A., Grinenko, L.N. and Fallick, A.E. (1998) 2000 Ma sulphide concretions from the 'Productive' Formation of the Pechenga Greenstone Belt, NW Russia: genetic history based on morphological and isotopic evidence. Chem. Geol. 148, 61–94.

    Article  CAS  Google Scholar 

  • Melezhik, V.A., Fallick, A.E., Medvedev, P.V. and Makarikhin, V.V. (1999) Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth Sci. Rev. 48, 71–120.

    Article  CAS  Google Scholar 

  • Mortimer, R.J.G. and Coleman, M. (1997) Microbial influence on the oxygen isotopic composition of diagenetic siderite. Geochim. Cosmochim. Acta 61, 1705–1711.

    Article  CAS  Google Scholar 

  • Mozley, P.S. and Burns, S.J. (1993) Oxygen and carbon isotopic composition of marine carbonate concretions: an overview. J. Sediment. Petrol. 63, 73–83.

    CAS  Google Scholar 

  • Nelson, D.R., Trendall, A.F. and Altermann, W. (1999) Chronological correlations between the Pilbara and Kaapvaal cratons. Precambrian Res. 97, 165–189.

    Article  CAS  Google Scholar 

  • Neruchev, S.G. (1982) Uranium and Life in the Earth History. Nedra, Moscow, 208 pp (in Russ.).

    Google Scholar 

  • Pavlov, A.A., Hurtgen, M.T., Kasting, J.F. and Arthur, M.A. (2003) Methane-rich Proterozoic atmosphere? Geology 31, 87–90.

    Google Scholar 

  • Perry, E.C., Jr, Tan, F.C. and Morey, G.B. (1973) Geology and stable isotope geochemistry of the Biwabik Iron Formation, Northern Minnesota In: Precambrian iron-formations of the world. Soc. Econ. Geol. Bull. 68, 1110–1125.

    CAS  Google Scholar 

  • Pettijohn, F.J. (1940) Archean metaconcretions of Thunder Lake, Ontario. Geol. Soc. Am. Bull. 51, 1841–1850.

    CAS  Google Scholar 

  • Pye, K., Dickson, J.A.D., Schiavon, N., Coleman, M.L. and Cox, M. (1990) Formation of siderite–Mg-calcite–iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology 37, 325–343.

    Google Scholar 

  • Raiswell, R. (1987) Non-steady state microbiological diagenesis and the origin of concretions and nodular limestones. In: J.D. Marshall (Ed.), Diagenesis of Sedimentary Sequences. Geol. Soc. Spec. Publ. 36, pp. 41–54.

    Google Scholar 

  • Raiswell, R., Whaler, K., Dean, S., Coleman, M.L. and Briggs, D.E.G. (1993) A simple three-dimensional model of diffusion-with-precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals. In: R.J. Parkes, P. Westbroek and J.W. Leeuw (Eds), Marine Sediments, Burial, Pore Water Chemistry, Microbiology and Diagenesis. Marine Geol. 113, pp. 89–100.

    Article  CAS  Google Scholar 

  • Ripperdan, R.L. (2001) Stratigraphic variation in marine carbonate carbon isotope ratios. Rev. Mineral. 43, 637–662.

    CAS  Google Scholar 

  • Romankevich, E.A. (1977) Geochemistry of Organic Matter in the Ocean. Nauka (Science), Moscow, 265 pp (in Russ.).

    Google Scholar 

  • Rosenbaum, J.M. and Sheppard, S.M.F. (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim. Acta 50, 1147–1159.

    Google Scholar 

  • Sarmiento, J.L., Dunne, J., Gnadadesikan, A., Key, R.M., Matsumoto, K. and Slater, R. (2002) A new estimate of the CaCO3 to organic carbon export ratio. Global Biogeochem. Cycles 16, 1107.

    Article  CAS  Google Scholar 

  • Schidlowski, M. (1987) Application of stable carbon isotopes to early biogeochemical evolution on Earth. Earth Planet. Sci. Annu. Rev. 15, 47–72.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Appel, P.W.U., Eichmann, R. and Junge, C.E. (1979) Carbon isotope geochemistry of the 3.7 × 109 yr old Isua sediments, West Greenland; implications for the Archaean carbon and oxygen cycles. Geochim. Cosmochim. Acta 43, 189–200.

    Article  CAS  Google Scholar 

  • Sellés-Martínez, J. (1996) Concretion morphology, classification and genesis. Earth Sci. Rev. 41, 177–210.

    Article  Google Scholar 

  • Shen, Y., Buick, R. and Canfield, D.E. (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Shields, G. and Veizer, J. (2002) Precambrian marine carbonate isotope database: version 1.1. Geochem. Geophys. Geosyst. G3(3), 1–12.

    Google Scholar 

  • Simonson, B.M. (2003) Origin and evolution of large Precambrian iron formations. In: M. Chan and A. Archer (Eds), Extreme Depositional Environments: Mega End Members in Geologic Time. Geol. Soc. Am. Spec. Pap. 370, pp. 231–244.

    Google Scholar 

  • Simonson, B.M. and Carney, K.E. (1999) Roll-up structures: evidence of in situ microbial mats in late Archean deep shelf environments. Palaois 14, 13–14.

    Article  Google Scholar 

  • Simonson, B.M., Hassler, S.W. and Schubel, K.A. (1993a) Lithology and proposed revisions in stratigraphic nomenclature of the Wittenoom Formation (Dolomite) and overlying formations, Hamersley Group, Western Australia. West. Austral. Geol. Surv. Rep. 34, Prof. Pap. 65–79.

    Google Scholar 

  • Simonson, B.M., Schubel, K.A. and Hassler, S.W. (1993b) Carbonate sedimentology of the early Precambrian Hamersley Group of Western Australia. Precambrian Res. 60, 287–335.

    Article  Google Scholar 

  • Smyk, M.C. and Watkinson, D.H. (1990) Sulphide remobilization in Archean volcano-sedimentary rocks and its significance in Proterozoic silver vein genesis, Cobalt, Ontario. Can. J. Earth. Sci. 27, 1170–1181.

    Google Scholar 

  • Strakhov, N.M. (1962) Stages of development of exospheres and sedimentary rock-forming processes in the Earth history. Proc. Acad. Sci. USSR, Geol. Series 12, 3–22 (in Russ.).

    Google Scholar 

  • Strauss, H. (2003) Sulphur isotopes and the early Archaean sulphur cycle. Precambrian Res. 126, 349–361.

    Article  CAS  Google Scholar 

  • Sumner, D.Y. (2000) Autotrophic fixation of HCO3 caused calcite precipitation in 2.5 Ga. Geological Society of America, 2000 Annual Meeting. Geol. Soc. Am. Abstr. Programs 32, 257.

    Google Scholar 

  • Thode, H.G. and Goodwin, A.M. (1983) Further sulphur and carbon isotope studies of late Archaean iron-formations of the Canadian Shield and the rise of sulfate reducing bacteria. Precambrian Res. 20, 337–356.

    Article  CAS  Google Scholar 

  • Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence, 2nd ed. Springer, Berlin.

    Google Scholar 

  • Trendall, A.F., Compston, W., Nelson, D.R., De Laeter, J.R. and Bennett, V.C. (2004) SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western Australia. Aust. J. Earth Sci. 51, 621–644.

    Article  CAS  Google Scholar 

  • Veizer, J., Hoefs, J., Lowe, D.R. and Thurston, P.C. (1989) Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean seawater. Geochim. Cosmochim. Acta 53, 859–871.

    Article  PubMed  CAS  Google Scholar 

  • Veizer, J., Clayton, R.N., Hinton, R.W., Von Brunn, V., Mason, T.R., Buck, S.G. and Hoefs, J. (1990) Geochemistry of Precambrian carbonates: III. Shelf seas and non-marine environments of the Archean. Geochim. Cosmochim. Acta 54, 2717–2729.

    Article  CAS  Google Scholar 

  • Walker, J.C.G. (1984) Suboxic diagenesis in banded iron formation. Nature 309, 340–342.

    Article  PubMed  CAS  Google Scholar 

  • Watson, R.S., Trewin, N.H. and Fallick, A.E. (1995) The formation of carbonate cement in the Forth and Balmoral Fields, northern North Sea: a case for biodegradation, carbonate cementation and oil leakage during early burial In: A.J. Hartley and D.J. Prosser (Eds), Characterization of Deep Marine Clastic Systems. Geol. Soc. Spec. Publ. 94, pp. 177–200.

    Article  CAS  Google Scholar 

  • Winter, B.L and Knauth, L.P. (1992) Stable isotope geochemistry of early Proterozoic carbonate concretions in the Animikie Group of the Lake Superior region; evidence for anaerobic bacterial processes. Precambrian Res. 54, 131–151.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fallick, A., Melezhik, V., Simonson, B. (2008). The Ancient Anoxic Biosphere Was Not As We Know It. In: Dobretsov, N., Kolchanov, N., Rozanov, A., Zavarzin, G. (eds) Biosphere Origin and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68656-1_12

Download citation

Publish with us

Policies and ethics