Skip to main content

Technical Artifacts in PET-CT Imaging

  • Chapter
  • First Online:
Clinical PET-CT in Radiology

Abstract

By following the daily quality control procedures for both the CT and the PET components of the combined PET-CT systems, the likelihood for artifacts intrinsic to PET-CT hardware can be reduced. If technical problems are detected, immediate action can help to avoid poor quality exams. The methodologic origins of PET-CT imaging artifacts are generally understood and corrections exist for most of them. Nevertheless, prospective measures, such as accurate patient positioning, optimized contrast administration protocols, and breath-hold instructions help reduce the magnitude and frequency of image artifacts in PET-CT. Limiting patient motion prospectively is even more important when using tracers that are more specific than FDG and therefore offer little, if any, anatomic information from the PET alone. The importance of carefully reviewing fused CT and PET images, with and without attenuation correction, must be stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinahan PE, et al. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25(10):2046–2053.

    Article  CAS  PubMed  Google Scholar 

  2. Beyer T, et al. Acquisition schemes for combined F-18-FDG-PET/CT imaging. A European perspective. In: Czernin J, et al. (ed.). Atlas of PET/CT Imaging in Oncology, New York: Springer, 2004:30–45.

    Google Scholar 

  3. Kinahan P, Hasegawa B, Beyer T. X-ray based attenuation correction for PET/CT scanners. Semin Nucl Med 2003;33(3):166–179.

    Article  PubMed  Google Scholar 

  4. Schulthess GKV. Cost considerations regarding an integrated CT-PET system. Eur Radiol 2000;10(Suppl 3):S377–S380.

    Article  Google Scholar 

  5. LaCroix KJ, et al. Investigation of the use of X-ray CT images for attenuation correction in SPECT. IEEE Trans Nucl Sci 1994;41:2793–2799.

    Article  Google Scholar 

  6. Tang HR, et al. Implementation of a combined X-ray CT scintillation camera imaging system for localizing and measuring radionuclide uptake: Experiments in phantoms and patients. IEEE Trans Nucl Sci 1999;46(3):551–557.

    Article  Google Scholar 

  7. Fleming JS. A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 1989;10:83–97.

    Article  CAS  PubMed  Google Scholar 

  8. Beyer T, Townsend D, Blodgett T. Dual-modality PET/CT tomography for clinical oncology. Q J Nucl Med 2002;46(1):24–34.

    CAS  PubMed  Google Scholar 

  9. Burger C, et al. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med 2002;29(7):922–927.

    Article  CAS  Google Scholar 

  10. Goerres GW, et al. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med 2002;29(3):367–370.

    Article  CAS  Google Scholar 

  11. Osman MM, et al. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 2003;44(2):240–243.

    PubMed  Google Scholar 

  12. Goerres GW, et al. Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 2003;226(2):577–584.

    Article  PubMed  Google Scholar 

  13. Beyer T. Design, construction, and validation of a combined PET/CT tomograph for clinical oncology, in Department of Physics. Surrey, UK: University of Surrey, 2000:303.

    Google Scholar 

  14. Beyer T, et al. Combined PET/CT imaging using a single, dual-modality tomograph: a promising approach to clinical oncology of the future. In: Wieler HJ, Coleman E (eds.). PET in Clinical Oncology. Darmstadt: Steinkopff, 2000:101–124.

    Google Scholar 

  15. Goerres GW, et al. PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med 2002;29(3):351–360.

    Article  CAS  Google Scholar 

  16. Osman MM, et al. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 2003;30(4):603–606.

    Article  PubMed  Google Scholar 

  17. Townsend DW, Beyer T. Integrated structure/function imaging with X-ray CT and PET. In: Valk PE, et al. (eds.). Positron Emission Tomography: Basic Science and Clinical Practice. London: Springer, 2003.

    Google Scholar 

  18. Goerres GW, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med 2002;43(11):1469–1475.

    PubMed  Google Scholar 

  19. Goerres GW, et al. PET/CT of the abdomen: optimizing the patient breathing pattern. Eur Radiol 2003;13:734–739.

    Article  PubMed  Google Scholar 

  20. Beyer T, et al. Respiration artifacts in whole-body 18F-FDG PET/CT studies with combined PET/CT tomographs employing spiral CT technology with 1 to 16 detector rows. Eur J Nucl Med Mol Imaging 2005;32(12):1429–1439.

    Article  PubMed  Google Scholar 

  21. Beyer T, et al. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med 2003;30(4):588–596.

    Article  Google Scholar 

  22. Namdar M, et al. Improved CAD assessment using a combined PET/CT scanner. J Nucl Med 2004;45(5):117P–118P.

    Google Scholar 

  23. DiFilippo F, et al. Initial clinical experience with 82Rb cardiac PET imaging on a PET/CT system. J Nucl Med 2004;45(5):117P.

    Google Scholar 

  24. Koepfl P, et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med 527;45(4):537–542.

    Google Scholar 

  25. Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 1993;34:143–150.

    CAS  PubMed  Google Scholar 

  26. Martinez-Möller A, et al. Artifacts from Misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med 2007;48(2):188–193.

    PubMed  Google Scholar 

  27. Beyer T, et al. Considerations on FDG-PET/CT imaging protocols. J Nucl Med 2004;45(Suppl 1):25S–35S.

    PubMed  Google Scholar 

  28. Halpern BS, et al. Impact of patient weight and emission scan time duration on PET/CT image quality and lesion detectability. J Nucl Med 2004;45(5):797–801.

    PubMed  Google Scholar 

  29. Beyer T, et al. On the use of positioning aids to reduce mis-­registration in the head/neck region of whole-body PET/CT studies. J Nucl Med 2005;46(4):596–602.

    PubMed  Google Scholar 

  30. Duerinckx AJ, Macovski A. Polychromatic streak artifacts in computed tomography images. J Comput Assist Tomogr 1978;2(4):481–487.

    Article  CAS  PubMed  Google Scholar 

  31. deMan B, et al. Metal streak artifacts in x-ray computed tomography: a simulation study. IEEE Trans Nucl Sci 1999;46(3):691–696.

    Article  Google Scholar 

  32. Bujenovic S, et al. Artifactual 2-deoxy-2-[18F]fluoro-D-glucose localization surrounding metallic objects in a PET/CT scanner using CT-based attenuation correction. Mol Imag Biol 2003;5(1):20–22.

    Article  Google Scholar 

  33. Kamel EM, et al. Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 2002;13:724–728.

    PubMed  Google Scholar 

  34. DiFilippo FP, Brunken RC. Do implanted pacemakers leads and ICD leads cause metal-related artifact in caridac PET/CT? J Nucl Med 2005;46(3):436–443.

    PubMed  Google Scholar 

  35. Schäfers K, Raupach R, Beyer T. Combined 18F-FDG-PET/CT imaging of the head and neck. An approach to metal artifact correction. Nuklearmedizin 2006;45:219–222.

    PubMed  Google Scholar 

  36. Goerres G, Schmid D, Eyrich G. Do hardware artefacts influence the performance of head and neck PET scans in patients with oral cavity squamous cell cancer? Dentomaxillofacial Radiol 200;32:365–371.

    Article  Google Scholar 

  37. Mahnken AH, et al. A new algorithm for metal artifact reduction in computed tomography. In vitro and in vivo evaluation after total hip replacement. Invest Radiol 2003;38(12):769–775.

    Article  PubMed  Google Scholar 

  38. Antoch G, et al. To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med 2004;45(90010):56S–65S.

    CAS  PubMed  Google Scholar 

  39. Antoch G, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med 2002;43(10):1339–1342.

    PubMed  Google Scholar 

  40. Dizendorf E, et al. Cause and magnitude of the error induced by oral CT contrast agent in CT-based attenuation correction of PET emission studies. J Nucl Med 2003;44(5):732–738.

    PubMed  Google Scholar 

  41. Antoch G, et al. Introduction and evaluation of a negative oral contrast agent to avoid contrast-induced artefacts in dual-modality PET/CT imaging. Radiology 2004;230:879–885.

    Article  PubMed  Google Scholar 

  42. Beyer T, et al. Optimized IV contrast administration protocols for diagnostic PET/CT imaging. J Nucl Med 2005;46(3):429–435.

    PubMed  Google Scholar 

  43. Brechtel K, et al. Optimized contrast enhanced CT protocols for diagnostic whole-body 18F-FDG PET/CT: single-phase versus multi-phase CT imaging. J Nucl Med 2006;47(3):470–476.

    PubMed  Google Scholar 

  44. Hapdey S, et al. Characterization of noise induced by CT-based attenuation correction in PET/CT images. J Nucl Med 2004;45(5):413P.

    Google Scholar 

  45. Carney JP, et al. CT-based attenuation correction: The effects of imaging with the arms in the field of view. J Nucl Med 2001;42(5):56–57P.

    Google Scholar 

  46. Ohnesorge B, et al. Efficient correction for CT image arifacts caused by objects extending oustide the scan field-of-view. Med Phys 2000;27(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  47. Schaller S, et al. An algorithm for virtual extension of the CT field of measurement for application in combined PET/CT scanners. Radiology 2002;225(Suppl):497.

    Google Scholar 

  48. Beyer T, et al. PET/CT imaging in the presence of truncation artifacts from scanning large patients beyond the smaller CT field-of-view. Radiology 2004;227(P):400.

    Google Scholar 

  49. Beyer T, et al. Whole-body 18F-FDG PET/CT in the presence of truncation artifacts. J Nucl Med 2006;47(1):91–99.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Beyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beyer, T. (2011). Technical Artifacts in PET-CT Imaging. In: Shreve, P., Townsend, D. (eds) Clinical PET-CT in Radiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48902-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48902-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48900-1

  • Online ISBN: 978-0-387-48902-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics