Skip to main content

Mating Cell-Cell Channels in Conjugating Bacteria

  • Chapter
Cell-Cell Channels

Abstract

Conjugative plasmid transfer is the most important mechanism for bacteria to deliver and acquire genetic information to cope with rapidly changing environmental conditions. To transfer genetic information intercellularly mating cell-cell channels between donor and recipient bacteria have to be established. For plasmid transfer in Gram-negative bacteria, subassemblies of these mating channels have been discovered, the order in which the transferred DNA contacts the transporter proteins has been determined and crystal structures of key components of the so-called conjugative type IV secretion systems have been solved. In contrast to this, knowledge on conjugative plasmid transfer of sex pheromone-inducible plasmids in Enterococcus faecalis is limited to molecular details on the complex regulation processes whereas for broad-host-range plasmids from Gram-positive bacteria investigations on the structure of the conjugative transfer apparatus and the interplay of the secretion components have recendy started. The following chapter has the intention to give an overview of the state of the art on conjugative plasmid transfer in Gram-positive and Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cascales E, Christie PJ. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 2003;2:137–149.

    Article  CAS  Google Scholar 

  2. Cascales E, Christie PJ. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 2004;304:1170–1173.

    Article  PubMed  CAS  Google Scholar 

  3. Clewell DB, Dunny GM. Conjugation and genetic exchange in enterococci. In: Gilmore MS, ed. The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. 1st ed. Washington: ASM press, 2002:265–300.

    Google Scholar 

  4. Chandler JR, Dunny GM. Enterococcal peptide sex pheromones: Synthesis and control of biological activity. Peptides 2004;25:1377–1388.

    Article  PubMed  CAS  Google Scholar 

  5. Dillard JP, Seifert HS. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 2001;41:263–277.

    Article  PubMed  CAS  Google Scholar 

  6. Hofreuter D, Odenbreit S, Haas R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 2001;41:379–391.

    Article  PubMed  CAS  Google Scholar 

  7. Schroeder G, Sawides SN, Waksman G et al. Type IV secretion machinery. In: Waksman G, Caparon M, Hultgren S, eds. Structural Biology of Bacterial Pathogenesis. 1st ed. Washington: ASM press, 2005:179–221.

    Google Scholar 

  8. Llosa M, O’Callaghan D. Euroconference on the biology of type IV secretion processes: Bacterial gates into the outer world. Mol Microbiol 2004;53:1–8.

    Article  PubMed  CAS  Google Scholar 

  9. Lawley TD, Klimke WA, Gubbins MJ et al. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 2003; 224:1–15.

    Article  PubMed  CAS  Google Scholar 

  10. Christie PJ. Type IV secretion: The Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 2004;1694:219–234.

    Article  PubMed  CAS  Google Scholar 

  11. Ding Z, Atmakuri K, Christie PJ. The outs and ins of bacterial type IV secretion substrates. Trends Microbiol 2003;11:527–535.

    Article  PubMed  CAS  Google Scholar 

  12. Atmakuri K, Cascales E, Christie PJ. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 2004;54:1199–1211.

    Article  PubMed  CAS  Google Scholar 

  13. Jakubowski SJ, Krishnamoorthy V, Cascales E et al. Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J Mol Biol 2004;341:961–977.

    Article  PubMed  CAS  Google Scholar 

  14. Christie PJ. The Agrobacterium T-complex transport apparatus: A paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 1997;179:3085–3094.

    PubMed  CAS  Google Scholar 

  15. Lai EM, Chesnokova O, Banta LM et al. Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 2000;182:3705–3716.

    Article  PubMed  CAS  Google Scholar 

  16. Pansegrau W, Lanka E. Enzymology of DNA transfer by conjugative mechanisms. Prog Nucleic Acid Res Mol Biol 1996;197–251.

    Google Scholar 

  17. Zhu J, Oger PM, Schrammeijer B. et al. The bases of crown gall tumorigenesis. J Bacteriol 2000;182:3885–3895.

    Article  PubMed  CAS  Google Scholar 

  18. Hamilton CM, Lee P, Li PL et al. TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 2000;182:1541–1548.

    Article  PubMed  CAS  Google Scholar 

  19. Byrd DR, Matson MW. Nicking by transesterification: The reaction catalysed by a relaxase. Mol Microbiol 1997;25:1011–1022.

    Article  PubMed  CAS  Google Scholar 

  20. Howard EA, Zupan JR, Citovsky V et al. The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: Implications for nuclear uptake of DNA in plant cells. Cell 1992;68:109–118.

    Article  PubMed  CAS  Google Scholar 

  21. Bravo-Angel AM, Gloeckler V, Hohn B et al. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells. J Bacteriol 1999;181:5758–5765.

    PubMed  CAS  Google Scholar 

  22. Rees CED, Wilkins BM. Protein transfer into the recipient cell during bacterial conjugation: Studies with F and RP4. Mol Microbiol 1990;4:1199–1205.

    Article  PubMed  CAS  Google Scholar 

  23. Vergunst AC, Schrammeijer B, den Dulk-Ras A et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 2000;290:979–982.

    Article  PubMed  CAS  Google Scholar 

  24. Wilkins BM, Thomas AT. DNA-independent transport of plasmid primase protein between bacteria by the I1 conjugation system. Mol Microbiol 2000;38:650–657.

    Article  PubMed  CAS  Google Scholar 

  25. Schrammeijer B, den Dulk-Ras A, Vergunst AC et al. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: Evidence for transport of a novel effector protein VirE3. Nud Acids Res 2003;31:860–868.

    Article  CAS  Google Scholar 

  26. Vergunst AC, Van Lier MC, den Dulk-Ras et al. Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 2003;133:978–988.

    Article  PubMed  CAS  Google Scholar 

  27. Simone M, McCullen CA, Stah1 LE et al. The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 2001;41:1283–1293.

    Article  PubMed  CAS  Google Scholar 

  28. Luo Z-Q, Isberg RR. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci USA 2004;101:841–846.

    Article  PubMed  CAS  Google Scholar 

  29. Atmakuri K, Ding Z, Christie PJ. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at the cell poles of Agrobacterium tumefaciens. Mol Microbiol 2003;49:1699–1733.

    Article  PubMed  CAS  Google Scholar 

  30. Cabezon E, Lanka E, de la Cruz F. Requirements for mobilization of plasmids RSF1010 and ColE1 by the IncW plasmid R388: trwB and RP4 traG are interchangeable. J Bacteriol 1994;176:4455–4558.

    PubMed  CAS  Google Scholar 

  31. Cabezon E, Sastre JI, de la Cruz F. Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 1997;254:400–406.

    Article  PubMed  CAS  Google Scholar 

  32. Sastre JI, Cabezon E, de la Cruz F. The carboxyl terminus of protein TraD adds specificity and efficiency to F-plasmid conjugative transfer. J Bacteriol 1998;180:6039–6042.

    PubMed  CAS  Google Scholar 

  33. Schroeder G, Krause S, Zechner EL et al. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: Inner membrane gate for exported substrates? J Bacteriol 2002;184:2767–2779.

    Article  CAS  Google Scholar 

  34. Szpirer CY, Faelen M, Couturier M. Interaction between the RP4 coupling protein TraG and the pBHR1 mobilization protein Mob. Mol Microbiol 2000;37:1283–1292.

    Article  PubMed  CAS  Google Scholar 

  35. Das A, Xie YH. Construction of transposon Tn3PhoA: Its application in defining the membrane topology of the Agrobacterium tumefaciens DNA transfer proteins. Mol Microbiol 1998;27:405–414.

    Article  PubMed  CAS  Google Scholar 

  36. Lee MH, Kosuk N, Bailey J et al. Analysis of F factor TraD membrane topology by use of gene fusions and trypsin-sensitive insertions. J Bacteriol 1999;181:6108–6113.

    PubMed  CAS  Google Scholar 

  37. Gomis-Ruth FX, Moncalian G, Perez-Luque R et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 2001;409:637–641.

    Article  PubMed  CAS  Google Scholar 

  38. Gomis-Ruth FX, Moncalian G, de la Cruz F et al. Conjugative plasmid protein TrwB, an integral membrane type IV secretion system coupling protein. Detailed structural features and mapping of the active site cleft. J Biol Chem 2002;277:7556–7566.

    Article  PubMed  CAS  Google Scholar 

  39. Berger BR, Christie PJ. Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: VirB2 through virB11 are essential virulence genes. J Bacteriol 1994;176:3646–3660.

    PubMed  CAS  Google Scholar 

  40. Krall L, Wiedemann U, Unsin G et al. Detergent extraction identifies different VirB protein sub-assemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 2002;99:11405–11410.

    Article  PubMed  CAS  Google Scholar 

  41. Das A, Xie Y-H. The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 2000;182:758–763.

    Article  PubMed  CAS  Google Scholar 

  42. Ward DV, Draper O, Zupan JR et al. Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci USA 2002;99:11493–11500.

    Article  PubMed  CAS  Google Scholar 

  43. Cao TB, Saier Jr MH. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: Organismal distribution, structural constraints and evolutionary conclusions. Microbiol 2001;147:3201–3214.

    CAS  Google Scholar 

  44. Planet PJ, Kachlany SC, DeSalle R et al. Phylogeny of genes for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 2001;98:2503–2508.

    Article  PubMed  CAS  Google Scholar 

  45. Krause S, Barcena M, Pansegrau W et al. Sequence related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci USA 2000;97:3067–3072.

    Article  PubMed  CAS  Google Scholar 

  46. Yeo HJ, Sawides SN, Herr AB et al. Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV system. Mol Cell 2000;6:1461–1472.

    Article  PubMed  CAS  Google Scholar 

  47. Lupas AN, Martin J. AAA proteins. Curr Opin Struct Biol 2002;12:746–753.

    Article  PubMed  CAS  Google Scholar 

  48. Dang TAT, Christie PJ. The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 1997;179:453–462.

    PubMed  CAS  Google Scholar 

  49. Rashkova S, Spudich GM, Christie PJ. Mutational analysis of the Agrobacterium tumefaciens VirB11 ATPase: Identification of functional domains and evidence for multimerization. J Bacteriol 1997;179:583–589.

    PubMed  CAS  Google Scholar 

  50. Sagulenko Y, Sagulenko V, Chen J et al. Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 2001;183:5813–5825.

    Article  PubMed  CAS  Google Scholar 

  51. Llosa M, Gomis-Ruth FX, Coll M et al. Bacterial conjugation: A two-step mechanism for DNA transport. Mol Microbiol 2002;45:1–8.

    Article  PubMed  CAS  Google Scholar 

  52. Dang TAT, Zhou X-R, Graf B et al. Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on assembly and function of the T-DNA transporter. Mol Microbiol 1999;32:1239–1253.

    Article  PubMed  CAS  Google Scholar 

  53. Rabel C, Grahn AM, Lurz R et al. The VirB4 family of proposed traffic nucleoside triphosphatases: Common motifs in plasmid RP4 TrbE are essential for conjugation and phage adsorption. J Bacteriol 2003;185:1045–1058.

    Article  PubMed  CAS  Google Scholar 

  54. Berger BR, Christie PJ. The Agrobacterium tumefaciens virB4 gene product is an essential virulence protein requiring an intact nucleoside triphosphate-binding domain. J Bacteriol 1993;175:1723–1734.

    PubMed  CAS  Google Scholar 

  55. Bohne J, Yim A, Binns AN. The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid. Proc Natl Acad Sci USA 1998;95:7057–7062.

    Article  PubMed  CAS  Google Scholar 

  56. Liu Z, Binns AN. Functional subsets of the VirB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. J Bacteriol 2003;185:3259–3269.

    Article  PubMed  CAS  Google Scholar 

  57. Burns DL. Type IV transporters of pathogenic bacteria. Curr Opin Microbiol 2003;6:29–34.

    Article  PubMed  CAS  Google Scholar 

  58. Ruhfel RE, Manias DA, Dunny GM. Cloning and characterization of a region of the Enterococcus faecalis conjugative plasmid pCF10, encoding a sex pheromone-binding function. J Bacteriol 1993;175:5253–5259.

    PubMed  CAS  Google Scholar 

  59. Leonard BA, Podbielski A, Hedberg PJ et al. Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc Natl Acad Sci USA 1996;93:260–264.

    Article  PubMed  CAS  Google Scholar 

  60. Kao SM, Olmsted SB, Viksnins AS et al. Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J Bacteriol 1991;173:7650–7664.

    PubMed  CAS  Google Scholar 

  61. Tame JR, Murshudov GN, Dodson EJ et al. The structural basis of sequence-independent peptide binding by OppA protein. Science 1994;264:1578–1581.

    Article  PubMed  CAS  Google Scholar 

  62. Nakayama J, Yoshida K, Kobayashi H et al. Cloning and characterization of a region of Enterococcus faecalis plasmid pPD1 encoding pheromone inhibitor (ipd), pheromone sensitivity (traC), and pheromone shutdown (traB) genes. J Bacteriol 1995;177:5567–5573.

    PubMed  CAS  Google Scholar 

  63. Mori M, Sakagami Y, Ishii Y et al. Structure of cCF10, a peptide sex pheromone which induces conjugative transfer of the Streptococcus faecalis tetracycline resistance plasmid, pCF10. J Biol Chem 1988;263:14574–14578.

    PubMed  CAS  Google Scholar 

  64. Dunny GM, Antiporta MH, Hirt H. Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis: Probing the genetic and molecular basis for specificity of the pheromone response. Peptides 2001;22:1529–1539.

    Article  PubMed  CAS  Google Scholar 

  65. Ehrenfeld EE, Kessler RE, Clewell DB. Identification of pheromone-induced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. J Bacteriol 1986;168:6–12.

    PubMed  CAS  Google Scholar 

  66. Paulsen IT, Banerjei L, Myers GS et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003;299:2071–2074.

    Article  PubMed  CAS  Google Scholar 

  67. Clewell DB, An FY, Flannagan SE et al. Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol Microbiol 2000;35:246–247.

    Article  PubMed  CAS  Google Scholar 

  68. Dev IK, Ray PH. Signal peptidases and signal peptide hydrolases. J Bioenerg Biomembr 1990;22:271–290.

    Article  PubMed  CAS  Google Scholar 

  69. Nakayama J, Ono Y, Suzuki A. Isolation and structure of the sex pheromone inhibitor, iAM373, of Enterococcus faecalis. Biosci Biotechnol Biochem 1995;59:1358–1359.

    Article  PubMed  CAS  Google Scholar 

  70. Nakayama J, Ruhfel RE, Dunny GM et al. The prgQ gene of the Enterococcus faecalis tetracycline resistance plasmid pCF10 encodes a peptide inhibitor, iCF10. J Bacteriol 1994;176:7405–7408.

    PubMed  CAS  Google Scholar 

  71. Buttaro BA, Antiporta MH, Dunny GM. Cell-associated pheromone peptide (cCF10) production and pheromone inhibition in Enterococcus faecalis. J Bacteriol 2000;182:4926–4933.

    Article  PubMed  CAS  Google Scholar 

  72. Clewell DB, Francia MV, Flannagan SE et al. Enterococcal plasmid transfer: Sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 2002;48:193–201.

    Article  PubMed  CAS  Google Scholar 

  73. Francia MV, Clewell DB. Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: Identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol Microbiol 2002;45:375–395.

    Article  PubMed  CAS  Google Scholar 

  74. Hirt H, Manias DA, Bryan EM et al. Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: Complete sequence and comparative analysis of the transcriptional and phenotypic response of pCF10-containing cells to pheromone induction. J Bacteriol 2005;187:1044–1054.

    Article  PubMed  CAS  Google Scholar 

  75. Mills DA, McKay LL, Dunny GM. Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J Bacteriol 1996;178:3531–3538.

    PubMed  CAS  Google Scholar 

  76. Ike Y, Tanimoto K, Tomita H et al. Efficient transfer of the pheromone-independent Enterococcus faecium plasmid pMG1 (Gmr) (65.1 kilobases) to Enterococcus strains during broth matings. J Bacteriol 1998;180:4886–4892.

    PubMed  CAS  Google Scholar 

  77. Grohmann E, Muth G, Espinosa M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev 2003;67:277–301.

    Article  PubMed  CAS  Google Scholar 

  78. Belhocine K, Plante I, Cousineau B. Conjugation mediates transfer of the LI.LtrB group II intron between different bacterial species. Mol Microbiol 2004;51:1459–1469.

    Article  PubMed  CAS  Google Scholar 

  79. Clewell DB. Movable genetic elements and antibiotic resistance in enterococci. Eur J Clin Microbiol Infect Dis 1990;9:90–102.

    Article  PubMed  CAS  Google Scholar 

  80. Schaberg DR, Zervos MJ. Intergeneric and interspecies gene exchange in gram-positive cocci. Antimicrob Agents Chemother 1986;30:817–822.

    PubMed  CAS  Google Scholar 

  81. Berg T, Firth N, Apisiridej S et al. Complete nucleotide sequence of pSK4l: Evolution of staphylococcal conjugative multiresistance plasmids. J Bacteriol 1998;180:4350–4359.

    PubMed  CAS  Google Scholar 

  82. Firth N, Ridgway KP, Byrne ME et al. Analysis of a transfer region from the staphylococcal conjugative plasmid pSK41. Gene 1993;136:13–25.

    Article  PubMed  CAS  Google Scholar 

  83. Dougherty BA, Hill C, Weidmann JF et al. Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol Microbiol 1998;29:1029–1038.

    Article  PubMed  CAS  Google Scholar 

  84. Kurenbach B, Bohn C, Prabhu J et al. Intergeneric transfer of the Enterococcus faecalis plasmid pIP501 to Escherichia coli and Streptomyces lividans and sequence analysis of its tra region. Plasmid 2003;50:86–93.

    Article  PubMed  CAS  Google Scholar 

  85. Thompson JK, Collins MA. Completed sequence of plasmid pIP501 and origin of spontaneous deletion derivatives. Plasmid 2003;50:28–35.

    Article  PubMed  CAS  Google Scholar 

  86. Morton TM, Eaton DM, Johnston JL et al. DNA sequence and units of transcription of the conjugative transfer gene complex (trs) of Staphylococcus aureus plasmid pGO1. J Bacteriol 1993;175:4436–4447.

    PubMed  CAS  Google Scholar 

  87. Sharma VK, Johnston JL, Morton TM et al. Transcriptional regulation by TrsN of conjugative transfer genes on staphylococcal plasmid pG01. J Bacteriol 1994;176:3445–3454.

    PubMed  CAS  Google Scholar 

  88. Tanimoto K, Ike Y. Analysis of the conjugal transfer system of the pheromone-independent highly transferable Enterococcus plasmid pMG1: Identification of a tra gene (traA) up-regulated during conjugation. J Bacteriol 2002;184:5800–5804.

    Article  PubMed  CAS  Google Scholar 

  89. Kurenbach B, Grothe D, Farías ME et al. The tra region of the conjugative plasmid pIP501 is organized in an operon with the first gene encoding the relaxase. J Bacteriol 2002;184:1801–1805.

    Article  PubMed  CAS  Google Scholar 

  90. Salmond GPC. Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu Rev Phytopathol 1994;32:181–200.

    Article  CAS  Google Scholar 

  91. Llosa M, de la Cruz F. Bacterial conjugation: A potential tool for genomic engineering. Res Microbiol 2005;156:1–6.

    Article  PubMed  CAS  Google Scholar 

  92. Christie PJ. Type IV secretion: Intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 2001;40:294–305.

    Article  PubMed  CAS  Google Scholar 

  93. Bateman A, Rawlings ND. The CHAP domain: A large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 2003;28:234–237.

    Article  PubMed  CAS  Google Scholar 

  94. Rigden DJ, Jedrzejas MJ, Galperin MY. Amidase domains from bacterial and phage autolysins define a family of γ-D,L-glutamate-specific amidohydrolases. Trends Biochem Sci 2003;28:230–234.

    Article  PubMed  CAS  Google Scholar 

  95. Climo MW, Sharma VK, Archer GL. Identification and characterization of the origin of conjugative transfer (oriT) and a gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1. J Bacteriol 1996;178:4975–4983.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Grohmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Grohmann, E. (2006). Mating Cell-Cell Channels in Conjugating Bacteria. In: Cell-Cell Channels. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46957-7_2

Download citation

Publish with us

Policies and ethics