Skip to main content

Unfolded Protein Response: Contributions to Development and Disease

  • Chapter
Cell Stress Proteins

Part of the book series: Protein Reviews ((PRON,volume 7))

Abstract

The unfolded protein response (UPR) is a multifaceted signal transduction pathway that is activated in all eukaryotic organisms in response to changes in the environment of the endoplasmic reticulum (ER) that adversely affect protein folding and assembly in the secretory pathway. The response is generally thought to protect cells from the transient alterations that can occur in the ER environment and serves to restore homeostatis in this organelle. Under extreme or prolonged stress, apoptotic pathways can be activated to destroy the cell. Recent studies reveal that in addition to protecting cells from adverse physiological conditions, the UPR plays an essential role in the normal development and functioning of some tissues and can be a major contributor to the pathology of some diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alarcon, R., Koumenis, C., Geyer, R. K., Maki, C. G., and Giaccia, A. J. (1999) Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. Cancer Res 59:6046–51.

    PubMed  CAS  Google Scholar 

  • Aoyama, K., Burns, D. M., Suh, S. W., Garnier, P., Matsumori, Y., Shiina, H., et al. (2005) Acidosis causes endoplasmic reticulum stress and caspase-12-mediated astrocyte death. J Cereb Blood Flow Metab 25:358–70.

    Article  PubMed  CAS  Google Scholar 

  • Araki, E., Oyadomari, S., and Mori, M. (2003) Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus. Exp Biol Med 228:1213–7.

    CAS  Google Scholar 

  • Bando, Y., Katayama, T., Kasai, K., Taniguchi, M., Tamatani, M., and Tohyama, M. (2003) GRP94 (94 kDa glucose-regulated protein) suppresses ischemic neuronal cell death against ischemia/reperfusion injury. Eur J Neurosci 18:829–40.

    Article  PubMed  Google Scholar 

  • Batchvarova, N., Wang, X.-Z., and Ron, D. (1995) Inhibition of adipogenesis by the stressinduced protein CHOP (Gadd153). EMBO J 14:4654–61.

    PubMed  CAS  Google Scholar 

  • Benali-Furet, N. L., Chami, M., Houel, L., De, G. F., Vernejoul, F., Lagorce, D., Buscail, L., Bartenschlager, R., Ichas, F., Rizzuto, R., and Paterlini-Brechot, P. (2005) Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 24:4921–33.

    Article  PubMed  CAS  Google Scholar 

  • Benavides, A., Pastor, D., Santos, P., Tranque, P., and Calvo, S. (2005) CHOP plays a pivotal role in the astrocyte death induced by oxygen and glucose deprivation. Glia 52:261–75.

    Article  PubMed  Google Scholar 

  • Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., and Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–32.

    Article  PubMed  CAS  Google Scholar 

  • Bi, M., Naczki, C., Koritzinsky, M., Fels, D., Blais, J., Hu, N., Harding, H., Novoa, I., Varia, M., Raleigh, J., Scheuner, D., Kaufman, R. J., Bell, J., Ron, D., Wouters, B. G., and Koumenis, C. (2005) ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 24:3470–81.

    Article  PubMed  CAS  Google Scholar 

  • Biason-Lauber, A., Lang-Muritano, M., Vaccaro, T., and Schoenle, E. J. (2002) Loss of kinase activity in a patient with Wolcott-Rallison syndrome caused by a novel mutation in the EIF2AK3 gene. Diabetes 51:2301–5.

    Article  PubMed  CAS  Google Scholar 

  • Blais, J. D., Filipenko, V., Bi, M., Harding, H. P., Ron, D., Koumenis, C., Wouters, B. G., and Bell, J. C. (2004) Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24:7469–82.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, M., Bryant, K. F., Jousse, C., Long, K., Harding, H. P., Scheuner, D., Kaufman, R. J., Ma, D., Coen, D. M., Ron, D., and Yuan, J. (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–9.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, J.W., and Diehl, J. A. (2000) PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A 97:12625–30.

    Article  PubMed  CAS  Google Scholar 

  • Brodsky, J. L., Werner, E. D., Dubas, M. E., Goeckeler, J. L., Kruse, K. B., and McCracken, A. A. (1999) The requirement for molecular chaperones during endoplasmic reticulumassociated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–60.

    Article  PubMed  CAS  Google Scholar 

  • Brostrom, C. O., Prostko, C. R., Kaufman, R. J., and Brostrom, M. A. (1996) Inhibition of translational initiation by activators of the glucose-regulated stress protein and heat shock protein stress response systems. Role of the interferon-inducible double-stranded RNA-activated eukaryotic initiation factor 2alpha kinase. J Biol Chem 271:24995–5002.

    Article  PubMed  CAS  Google Scholar 

  • Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., Clask, S.G., and Ron, D. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–6.

    Article  PubMed  CAS  Google Scholar 

  • Cardozo, A. K., Ortis, F., Storling, J., Feng, Y. M., Rasschaert, J., Tonnesen, M., Van Eylen, F., Mandrup-Poulsen, T., Herchuelz, A., and Eizirik, D. L. (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic betacells. Diabetes 54:452–61.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. L., Culmsee, C., Haughey, N., Klapper, W., and Mattson, M. P. (2002) Presenilin-1 mutations sensitize neurons to DNA damage-induced death by a mechanism involving perturbed calcium homeostasis and activation of calpains and caspase-12. Neurobiol Dis 11:2–19.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. L., Fu, W., Zhang, P., Cheng, A., Lee, J., Kokame, K., and Mattson, M. P. (2004) Herp stabilizes neuronal Ca2+homeostasis and mitochondrial function during endoplasmic reticulum stress. J Biol Chem 279:28733–43.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee, S., Hirota, H., Belfi, C. A., Berger, S. J., and Berger, N. A. (1997) Hypersensitivity to DNA cross-linking agents associated with up-regulation of glucose-regulated stress protein GRP78. Cancer Res 57:5112–6.

    PubMed  CAS  Google Scholar 

  • Chen, X., Ding, Y., Liu, C. G., Mikhail, S., and Yang, C. S. (2002) Overexpression of glucose-regulated protein 94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis 23:123–30.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, G., Feng, Z., and He, B. (2005) Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. J Virol 79:1379–88.

    Article  PubMed  CAS  Google Scholar 

  • Ciccaglione, A. R., Costantino, A., Tritarelli, E., Marcantonio, C., Equestre, M., Marziliano, N., and Rapicetta, M. (2005) Activation of endoplasmic reticulum stress response by hepatitis C virus proteins. Arch Virol 150:1339–56.

    Article  PubMed  CAS  Google Scholar 

  • Contreras, J. L., Smyth, C. A., Bilbao, G., Eckstein, C., Young, C. J., Thompson, J. A., Curiel, D. T., and Eckhoff, D. E. (2003) Coupling endoplasmic reticulum stress to cell death program in isolated human pancreatic islets: Effects of gene transfer of Bcl-2. Transpl Int 16:537–42.

    Article  PubMed  CAS  Google Scholar 

  • Cox, J. S., Shamu, C. E., and Walter, P. (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–206.

    Article  PubMed  CAS  Google Scholar 

  • Cox, J. S. and Walter, P. (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, R. G., Pedersen, W. A., Camandola, S., Rothstein, J. D., and Mattson, M. P. (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stressinduced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 52:448–57.

    Article  PubMed  CAS  Google Scholar 

  • Cybulsky, A. V., Takano, T., Papillon, J., and Bijian, K. (2005) Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem 280:24396–403.

    Article  PubMed  CAS  Google Scholar 

  • Delepine, M., Nicolino, M., Barrett, T., Golamaully, M., Lathrop, G. M., and Julier, C. (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25:406–9.

    Article  PubMed  CAS  Google Scholar 

  • Dimcheff, D. E., Askovic, S., Baker, A. H., Johnson-Fowler, C., and Portis, J. L. (2003) Endoplasmic reticulum stress is a determinant of retrovirus-induced spongiform neurodegeneration. J Virol 77:12617–29.

    Article  PubMed  CAS  Google Scholar 

  • Dorner, A. J., Wasley, L. C., and Kaufman, R. J. (1992) Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J 11:1563–71.

    PubMed  CAS  Google Scholar 

  • Dorner, A. J., Wasley, L. C., Raney, P., Haugejorden, S., Green, M., and Kaufman, R. J. (1990) The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J Biol Chem 265:22029–34.

    PubMed  CAS  Google Scholar 

  • Doutheil, J., Althausen, S., Treiman, M., and Paschen, W. (2000) Effect of nitric oxide on endoplasmic reticulum calcium homeostasis, protein synthesis and energy metabolism. Cell Calcium 27:107–15.

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard, L., and Helenius, A. (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–91.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, D. E., Chauhan, V., and Koong, A. C. (2005) The unfolded protein response: A novel component of the hypoxic stress response in tumors. Mol Cancer Res 3:597–605.

    Article  PubMed  CAS  Google Scholar 

  • Feng, B., Yao, P. M., Li, Y., Devlin, C. M., Zhang, D., Harding, H. P., Sweeney, M., Rong, J. X., Kuriakose, G., Fisher, E. A., Marks, A. R., Ron, D., Tabas, I. (2004) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biol. 5:781–92.

    Article  CAS  Google Scholar 

  • Fernandez, P. M., Tabbara, S. O., Jacobs, L. K., Manning, F. C., Tsangaris, T. N., Schwartz, A. M., Kennedy, K. A., and Patierno, S. R. (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59:15–26.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N., and Davis-Smyth, T. (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25.

    Article  PubMed  CAS  Google Scholar 

  • Gass, J. N., Gifford, N. M., and Brewer, J. W. (2002) Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 277:49047–54.

    Article  PubMed  CAS  Google Scholar 

  • Gosky, D., and Chatterjee, S. (2003) Down-regulation of topoisomerase II alpha is caused by up-regulation of GRP78. Biochem Biophys Res Commun 300:327–32.

    Article  PubMed  CAS  Google Scholar 

  • Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., and Giaccia, A. J. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91.

    Article  PubMed  CAS  Google Scholar 

  • Graham, K. S., Le, A., and Sifers, R. N. (1990) Accumulation of the insoluble PiZ variant of human alpha 1-antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP. J Biol Chem 265:20463–8.

    PubMed  CAS  Google Scholar 

  • Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–108.

    Article  PubMed  CAS  Google Scholar 

  • Harding, H. P., and Ron, D. (2002) Endoplasmic reticulum stress and the development of diabetes: A review. Diabetes 51:S455–61.

    Article  PubMed  CAS  Google Scholar 

  • Harding, H. P., Zeng, H., Zhang, Y., Jungries, R., Chung, P., Plesken, H., Sabatini, D. D., and Ron, D. (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–63.

    Article  PubMed  CAS  Google Scholar 

  • Harding, H. P., Zhang, Y., and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–4.

    Article  PubMed  CAS  Google Scholar 

  • Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., Stojdl, D. F., Bell, J. C., Hettmann, T., Leiden, J. M., and Ron, D. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–33.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, M. G., Lu, D., Kim, M. L., Kociba, G. J., Shukri, T., Buteau, J., Wang, X., Frankel, W. L., Guttridge, D., Prentki, M., Grey, S. T., Ron, D., and Hai, T. (2004) Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol 24:5721–32.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., Saito, A., Okuno, S., Ferrand-Drake, M., Dodd, R. L., Nishi, T., Maier, C. M., Kinouchi, H., and Chan, P. H. (2003) Oxidative damage to the endoplasmic reticulum is implicated in ischemic neuronal cell death. J Cereb Blood Flow Metab 23:1117–28.

    Article  PubMed  CAS  Google Scholar 

  • Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–99.

    PubMed  CAS  Google Scholar 

  • Helenius, A. (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5:253–65.

    PubMed  CAS  Google Scholar 

  • Hendershot, L. M., Ting, J., and Lee, A. S. (1988) Identity of the immunoglobulin heavychain-binding protein with the 78,000-dalton glucose-regulated protein and the role of post-translational modifications in its binding function. Mol Cell Biol 8:4250–6.

    PubMed  CAS  Google Scholar 

  • Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., Tsujimoto, Y., and Tohyama, M. (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Ata-induced cell death. J Cell Biol 165:347–56.

    Google Scholar 

  • Hockel, M., and Vaupel, P. (2001a) Biological consequences of tumor hypoxia. Semin Oncol 28:36–41.

    Article  PubMed  CAS  Google Scholar 

  • Hockel, M., and Vaupel, P. (2001b) Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–76.

    Article  PubMed  CAS  Google Scholar 

  • Hoozemans, J. J., Veerhuis, R., Van Haastert, E. S., Rozemuller, J. M., Baas, F., Eikelenboom, P., and Scheper, W. (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110:165–72.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Z. M., Tan, T., Yoshida, H., Mori, K., Ma, Y., and Yen, T. S. (2005) Activation of hepatitis B virus S promoter by a cell type-restricted IRE1-dependent pathway induced by endoplasmic reticulum stress. Mol Cell Biol 25:7522–33.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, C. S., Shen, J. W., and Subjeck, J. R. (1989) Resistance to etoposide induced by three glucose-regulated stresses in Chinese hamster ovary cells. Cancer Res 49:4452–4.

    PubMed  CAS  Google Scholar 

  • Ikeda, J., Kaneda, S., Kuwabara, K., Ogawa, S., Kobayashi, T., Matsumoto, M., Yura, T., and Yanagi, H. (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem Biophys Res Commun 230:94–9.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, H., Tanizawa, Y., Wasson, J., Behn, P., Kalidas, K., Bernal-Mizrachi, E., Mueckler, M., Marshall, H., Donis-Keller, H., Crock, P., Rogers, D., Mikuni, M., Kumashiro, H., Higashi, K., Sobue, G., Oka, Y., and Permutt, M. A. (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–8.

    Article  PubMed  CAS  Google Scholar 

  • Isler, J. A., Skalet, A. H., and Alwine, J. C. (2005) Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol 79:6890–9.

    Article  PubMed  CAS  Google Scholar 

  • Ito, D., Walker, J. R., Thompson, C. S., Moroz, I., Lin, W., Veselits, M. L., Hakim, A. M., Fienberg, A. A., and Thinakaran, G. (2004) Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol 24:9456–69.

    Article  PubMed  CAS  Google Scholar 

  • Iwakoshi, N. N., Lee, A. H., Vallabhajosyula, P., Otipoby, K. L., Rajewsky, K., and Glimcher, L. H. (2003) Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4:321–9.

    Article  PubMed  CAS  Google Scholar 

  • Iwawaki, T., Akai, R., Kohno, K., and Miura, M. (2004) A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat Med 10:98–102.

    Article  PubMed  CAS  Google Scholar 

  • Jamora, C., Dennert, G., and Lee, A. S. (1996) Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci U S A 93:7690–4.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H. Y., Wek, S. A., McGrath, B. C., Lu, D., Hai, T., Harding, H. P., Wang, X., Ron, D., Cavener, D. R., and Wek, R. C. (2004) Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 24:1365–77.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H. Y., Wek, S. A., McGrath, B. C., Scheuner, D., Kaufman, R. J., Cavener, D. R., and Wek, R. C. (2003) Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23:5651–63.

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki, H., Nishitoh, H., Urano, F., Sadamitsu, C., Matsuzawa, A., Takeda, K., Masutani, H., Yodoi, J., Urano, Y., Nagano, T., and Ichijo, H. (2005) Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ 12:19–24.

    Article  PubMed  CAS  Google Scholar 

  • Kharroubi, I., Ladriere, L., Cardozo, A. K., Dogusan, Z., Cnop, M., and Eizirik, D. L. (2004) Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: Role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 145:5087–96.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. T., Waters, K., Stoica, G., Qiang, W., Liu, N., Scofield, V. L., and Wong, P. K. (2004) Activation of endoplasmic reticulum stress signaling pathway is associated with neuronal degeneration in MoMuLV-ts1-induced spongiform encephalomyelopathy. Lab Invest 84:816–27.

    Article  PubMed  CAS  Google Scholar 

  • Kimata, Y., Kimata, Y. I., Shimizu, Y., Abe, H., Farcasanu, I. C., Takeuchi, M., Rose, M. D., and Kohno, K. (2003) Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Mol Biol Cell 14:2559–69.

    Article  PubMed  CAS  Google Scholar 

  • Kimata, Y., Oikawa, D., Shimizu, Y., Ishiwata-Kimata, Y., and Kohno, K. (2004) A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol 167:445–56.

    Article  PubMed  CAS  Google Scholar 

  • Kitao, Y., Hashimoto, K., Matsuyama, T., Iso, H., Tamatani, T., Hori, O., Stern, D. M., Kano, M., Ozawa, K., and Ogawa, S. (2004) ORP150/HSP12A regulates Purkinje cell survival: A role for endoplasmic reticulum stress in cerebellar development. J Neurosci 24:1486–96.

    Article  PubMed  CAS  Google Scholar 

  • Ko, H. S., Uehara, T., and Nomura, Y. (2002) Role of ubiquilin associated with proteindisulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. J Biol Chem 277:35386–92.

    Article  PubMed  CAS  Google Scholar 

  • Kohno, K., Higuchi, T., Ohta, S., Kohno, K., Kumon, Y., and Sakaki, S. (1997) Neuroprotective nitric oxide synthase inhibitor reduces intracellular calcium accumulation following transient global ischemia in the gerbil. Neurosci Lett 224:17–20.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, S., Murakami, T., Tatsumi, K., Ogata, M., Kanemoto, S., Otori, K., Iseki, K., Wanaka, A., and Imaizumi, K. (2005) OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 7:186–194.

    Article  PubMed  CAS  Google Scholar 

  • Koong, A. C., Chen, E. Y., and Giaccia, A. J. (1994) Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res 54:1425–30.

    PubMed  CAS  Google Scholar 

  • Korkotian, E., Schwarz, A., Pelled, D., Schwarzmann, G., Segal, M., and Futerman, A. H. (1999) Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J Biol Chem 274:21673–8.

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld, R., and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–64.

    Article  PubMed  CAS  Google Scholar 

  • Kostova, Z., and Wolf, D. H. (2003) For whom the bell tolls: Protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22:2309–17.

    Article  PubMed  CAS  Google Scholar 

  • Koumenis, C., Naczki, C., Koritzinsky, M., Rastani, S., Diehl, A., Sonenberg, N., Koromilas, A., and Wouters, B. G. (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2 alpha. Mol Cell Biol 22:7405–16.

    Article  PubMed  CAS  Google Scholar 

  • Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., and Sambrook, J. (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–4.

    Article  PubMed  CAS  Google Scholar 

  • Kudo, T., Katayama, T., Imaizumi, K., Yasuda, Y., Yatera, M., Okochi, M., Tohyama, M., and Takeda, M. (2002) The unfolded protein response is involved in the pathology of Alzheimer’s disease. Ann N Y Acad Sci 977:349–55.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, R., Azam, S., Sullivan, J. M., Owen, C., Cavener,D. R., Zhang, P., Ron, D., Harding, H. P., Chen, J. J., Han, A., White, B. C., Krause, G. S., and DeGracia, D. J. (2001) Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase, PERK. J Neurochem 77:1418–21.

    Article  PubMed  CAS  Google Scholar 

  • Ladiges, W. C., Knoblaugh, S. E., Morton, J. F., Korth, M. J., Sopher, B. L., Baskin, C. R., MacAuley, A., Goodman, A.G., LeBoeuf, R.C., and Katze, M.G. (2005) Pancreatic betacell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 54:1074–81.

    Article  PubMed  CAS  Google Scholar 

  • Ledoux, S., Yang, R., Friedlander, G., and Laouari, D. (2003) Glucose depletion enhances P-glycoprotein expression in hepatoma cells: Role of endoplasmic reticulum stress response. Cancer Res 63:7284–90.

    PubMed  CAS  Google Scholar 

  • Lee, A. H., Iwakoshi, N. N., and Glimcher, L. H. (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–59.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. S. (1987) Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 12:20–3.

    Article  CAS  Google Scholar 

  • Lee, A. S. (1992) Mammalian stress response: Induction of the glucose-regulated protein family. Curr Opin Cell Biol 4:267–73.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. S., Wells, S., Kim, K. S., and Scheffler, I. E. (1986) Enhanced synthesis of the glucose/calcium-regulated proteins in a hamster cell mutant deficient in transfer of oligosaccharide core to polypeptides. J Cell Physiol 129:277–82.

    Article  PubMed  CAS  Google Scholar 

  • Lei, K., and Davis, R. J. (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A 100:2432–7.

    Article  PubMed  CAS  Google Scholar 

  • Lenny, N., and Green, M.(1991) Regulation of endoplasmic reticulum stress proteins inCOS cells transfected with immunoglobulinmuheavy chain cDNA. J Biol Chem 266:20532–7.

    PubMed  CAS  Google Scholar 

  • Li, X. D., Lankinen, H., Putkuri, N., Vapalahti, O., and Vaheri, A. (2005) Tula hantavirus triggers pro-apoptotic signals of ER stress in Vero E6 cells. Virology 333:180–9.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H. Y., Masso-Welch, P., Di, Y. P., Cai, J.W., Shen, J.W., and Subjeck, J. R. (1993) The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin. Mol Biol Cell 4:1109–9.

    PubMed  CAS  Google Scholar 

  • Liu, N., Kuang, X., Kim, H. T., Stoica, G., Qiang, W., Scofield, V. L., and Wong, P. K. (2004) Possible involvement of both endoplasmic reticulum-and mitochondria-dependent pathways in MoMuLV-ts1-induced apoptosis in astrocytes. J Neurovirol 10:189–98.

    Article  PubMed  CAS  Google Scholar 

  • Llewellyn, D. H., and Roderick, H. L. (1998) Overexpression of calreticulin fails to abolish its induction by perturbation of normal ER function. Biochem Cell Biol 76:875–80.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y., and Hendershot, L. M. (2003) Delineation of the negative feedback regulatory loop that controls protein translation during ER stress. J Biol Chem 278:34864–73.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y., and Hendershot, L. M. (2004) The role of the unfolded protein response in tumour development: Friend or foe? Nat Rev Cancer 4:966–77.

    Article  PubMed  CAS  Google Scholar 

  • Mandic, A., Hansson, J., Linder, S., and Shoshan, M. C. (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278:9100–6.

    Article  PubMed  CAS  Google Scholar 

  • Mao, C., Dong, D., Little, E., Luo, S., and Lee, A. S. (2004) Transgenic mouse model for monitoring endoplasmic reticulum stress in vivo. Nat Med 10:1013–4.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–9.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Gary, D. S., Chan, S. L., and Duan, W. (2001) Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer’s disease. Biochem Soc Symp 151–62.

    Google Scholar 

  • McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y., and Holbrook, N. J. (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–59.

    Article  PubMed  CAS  Google Scholar 

  • McGarry, J. D., and Dobbins, R. L. (1999) Fatty acids, lipotoxicity and insulin secretion. Diabetologia 42:128–38.

    Article  PubMed  CAS  Google Scholar 

  • Milhavet, O., Martindale, J. L., Camandola, S., Chan, S. L., Gary, D. S., Cheng, A., Holbrook, N.J., and Mattson, M. P. (2002) Involvement of Gadd153 in the pathogenic action of presenilin-1 mutations. J Neurochem 83:673–81.

    Article  PubMed  CAS  Google Scholar 

  • Montie, H. L., Haezebrouck, A. J., Gutwald, J. C., and DeGracia, D. J. (2005) PERK is activated differentially in peripheral organs following cardiac arrest and resuscitation. Resuscitation 66:379–89.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Ma, W., Gething, M. J., and Sambrook, J. (1993) A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signalling from the ER to the nucleus. Cell 74:743–56.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Sant, A., Kohno, K., Normington, K., Gething, M. J., and Sambrook, J. F. (1992) A22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J 11:2583–93.

    PubMed  CAS  Google Scholar 

  • Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T., and Yasuhiko, Y. (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome cindependent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–94.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., and Yuan, J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–94.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103.

    Article  PubMed  CAS  Google Scholar 

  • Netherton, C. L., Parsley, J. C., and Wileman, T. (2004) African swine fever virus inhibits induction of the stress-induced proapoptotic transcription factor CHOP/GADD153. J Virol 78:10825–8.

    Article  PubMed  CAS  Google Scholar 

  • Nishitoh, H., Matsuzawa, A., Tobiume, K., Saegusa, K., Takeda, K., Inoue, K., Hori, S., Kakizuka, A., and Ichijo, H. (2002) ASK1 is essential for endoplasmic reticulum stressinduced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–55.

    Article  PubMed  CAS  Google Scholar 

  • Novoa, I., Zeng, H., Harding, H. P., and Ron, D. (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153:1011–22.

    Article  PubMed  CAS  Google Scholar 

  • Okamura, K., Kimata, Y., Higashio, H., Tsuru, A., and Kohno, K. (2000) Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 279:445–50.

    Article  PubMed  CAS  Google Scholar 

  • Oyadomari, S., Koizumi, A., Takeda, K., Gotoh, T., Akira, S., Araki, E., and Mori, M. (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 109:525–32.

    PubMed  CAS  Google Scholar 

  • Oyadomari, S., Takeda, K., Takiguchi, M., Gotoh, T., Matsumoto, M., Wada, I., Akira, S., Araki, E., and Mori, M. (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci U S A 98:10845–50.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa, K., Kuwabara, K., Tamatani, M., Takatsuji, K., Tsukamoto, Y., Kaneda, S., Yanagi, H., Stern, D. M., Eguchi, Y., Tsujimoto, Y., Ogawa, S., and Tohyama, M. (1999) 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J Biol Chem 274:6397–404.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa, K., Tsukamoto, Y., Hori, O., Kitao, Y., Yanagi, H., Stern, D. M., and Ogawa, S. (2001) Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone. Cancer Res 61:4206–13.

    PubMed  CAS  Google Scholar 

  • Paschen, W. (2004) Endoplasmic reticulum dysfunction in brain pathology: Critical role of protein synthesis. Curr Neurovasc Res 1:173–81.

    Article  PubMed  CAS  Google Scholar 

  • Paschen, W., and Mengesdorf, T. (2005) Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38:409–15.

    Article  PubMed  CAS  Google Scholar 

  • Pelled, D., Lloyd-Evans, E., Riebeling, C., Jeyakumar, M., Platt, F. M., and Futerman, A. H. (2003). Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with Nbutyldeoxynojirimycin. J Biol Chem 278:29496–501.

    Article  PubMed  CAS  Google Scholar 

  • Pelled, D., Trajkovic-Bodennec, S., Lloyd-Evans, E., Sidransky, E., Schiffmann, R., and Futerman, A. H. (2005) Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiol Dis 18:83–8.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, R. C., Delany, A. M., and Canalis, E. (2004). CCAAT/enhancer binding protein homologous protein (DDIT3) induces osteoblastic cell differentiation. Endocrinology 145:1952–60.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, R. C., Stadmeyer, L., Marciniak, S. J., Ron, D., and Canalis, E. (2005) C/EBP homologous protein is necessary for normal osteoblastic function. J Cell Biochem 97:633–40.

    Article  CAS  Google Scholar 

  • Poellinger, L., and Johnson, R. S. (2004) HIF-1 and hypoxic response: The plot thickens. Curr Opin Genet Dev 14:81–5.

    Article  PubMed  CAS  Google Scholar 

  • Pouyssegur, J., Shiu, R. P., and Pastan, I. (1977) Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell 11:941–7.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, C.W., and Ratcliffe, P. J. (2003) Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat Med 9:677–84.

    Article  PubMed  CAS  Google Scholar 

  • Putcha, G. V., Le, S., Frank, S., Besirli, C. G., Clark, K., Chu, B., Alix, S., Youle, R. J., LaMarche, A., Maroney, A. C., and Johnson, E. M., Jr. (2003) JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914.

    Article  PubMed  CAS  Google Scholar 

  • Qu, L., Huang, S., Baltzis, D., Rivas-Estilla, A. M., Pluquet, O., Hatzoglou, M., Koumenis, C., Taya, Y., Yoshimura, A., and Koromilas, A. (2004) Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev 18:261–77.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Peel, A., Logvinova, A., Del Rio, G., Hermel, E., Yokota, T., Goldsmith, P. C., Ellerby, L. M., Ellerby, H. M., and Bredesen, D. E. (2002) Coupling endoplasmic reticulum stress to the cell death program: Role of the ER chaperone GRP78. FEBS Lett 514:122–8.

    PubMed  CAS  Google Scholar 

  • Reddy, R. K., Mao, C., Baumeister, P., Austin, R. C., Kaufman, R. J., and Lee, A. S. (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: Role ofATP binding site in suppression of caspase-7 activation. J Biol Chem 278:20915–24.

    Article  PubMed  CAS  Google Scholar 

  • Reimold, A. M., Etkin, A., Clauss, I., Perkins, A., Friend, D. S., Zhang, J., Horton, H. F., Scott, A., Orkin, S. H., Byrne, M. C., Grusby, M. J., and Glimcher, L. H. (2000) An essential role in liver development for transcription factor XBP-1. Genes Dev 14: 152–7.

    PubMed  CAS  Google Scholar 

  • Reimold, A. M., Iwakoshi, N. N., Manis, J., Vallabhajosyula, P., Szomolanyi-Tsuda, E., Gravallese, E. M., Friend, D., Grusby, M. J., Alt, F., and Glimcher, L. H. (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–7.

    Article  PubMed  CAS  Google Scholar 

  • Romero-Ramirez, L., Cao, H., Nelson, D., Hammond, E., Lee, A. H., Yoshida, H., Mori, K., Glimcher, L. H., Denko, N. C., Giaccia, A. J., Le, Q. T., and Koong, A. C. (2004) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64:5943–7.

    Article  PubMed  CAS  Google Scholar 

  • Ron, D., and Habener, J. F. (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominantnegative inhibitor of gene transcription. Genes Dev 6:439–53.

    Article  PubMed  CAS  Google Scholar 

  • Roybal, C. N., Yang, S., Sun, C. W., Hurtado, D., Vander Jagt, D. L., Townes, T. M., and Abcouwer, S. F. (2004) Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem 279:14844–52.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, E. J., Harding, H. P., Angelastro, J. M., Vitolo, O.V., Ron, D., and Greene, L. A. (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22:10690–8.

    PubMed  CAS  Google Scholar 

  • Sato, N., Urano, F., Yoon, L. J., Kim, S. H., Li, M., Donoviel, D., Bernstein, A., Lee, A. S., Ron, D., Veselits, M. L., Sisodia, S. S., and Thinakaran, G. (2000) Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nat Cell Biol 2:863–70.

    Article  PubMed  CAS  Google Scholar 

  • Scheuner, D., Mierde, D. V., Song, B., Flamez, D., Creemers, J.W., Tsukamoto, K., Ribick, M., Schuit, F. C., and Kaufman, R. J. (2005) Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med 11:757–64.

    Article  PubMed  CAS  Google Scholar 

  • Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., Saunders, T., Bonner-Weir, S., and Kaufman, R. J. (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–76.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G. L. (2001) HIF-1, O(2), and the 3 PHDs: How animal cells signal hypoxia to the nucleus. Cell 107:1–3.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G. L., Agani, F., Feldser, D., Iyer, N., Kotch, L., Laughner, E., and Yu, A. (2000) Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv Exp Med Biol 475:123–30.

    Article  PubMed  CAS  Google Scholar 

  • Shaffer, A. L., Shapiro-Shelef, M., Iwakoshi, N. N., Lee, A. H., Qian, S. B., Zhao, H., Yu, X., Yang, L., Tan, B. K., Rosenwald, A., Hurt, E. M., Petroulakis, E., Sonenberg, N., Yewdell, J.W., Calame, K., Glimcher, L. H., and Staudt, L. M. (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J., Chen, X., Hendershot, L., and Prywes, R. (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J., Snapp, E. L., Lippincott-Schwartz, J., and Prywes, R. (2005) Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol Cell Biol 25:921–32.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J.W., Subjeck, J. R., Lock, R. B., and Ross, W. E. (1989) Depletion of topoisomerase II in isolated nuclei during a glucose-regulated stress response. Mol Cell Biol 9:3284–91.

    PubMed  CAS  Google Scholar 

  • Shi, Y., Vattem, K. M., Sood, R., An, J., Liang, J., Stramm, L., and Wek, R. C. (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alphasubunit kinase, PEK, involved in translational control. Mol Cell Biol 18:7499–509.

    PubMed  CAS  Google Scholar 

  • Shiu, R. P., Pouyssegur, J., and Pastan, I. (1977) Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci U S A 74:3840–4.

    Article  PubMed  CAS  Google Scholar 

  • Shohat, M., Janossy, G., and Dourmashkin, R. R. (1973) Development of rough endoplasmic reticulum in mouse splenic lymphocytes stimulated by mitogens. Eur J Immunol 3: 680–7.

    Article  PubMed  CAS  Google Scholar 

  • Shuda, M., Kondoh, N., Imazeki, N., Tanaka, K., Okada, T., Mori, K., Hada, A., Arai, M., Wakatsuki, T., Matsubara, O., Yamamoto, N., and Yamamoto, M. (2003) Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: A possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38:605–14.

    Article  PubMed  CAS  Google Scholar 

  • Sidrauski, C., Cox, J. S., and Walter, P. (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87:405–13.

    Article  PubMed  CAS  Google Scholar 

  • Sidrauski, C., and Walter, P. (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90: 1031–9.

    Article  PubMed  CAS  Google Scholar 

  • Silva, R. M., Ries, V., Oo, T. F., Yarygina, O., Jackson-Lewis, V., Ryu, E. J., Lu, P. D., Marciniak, S. M., Ron, D., Przedborski, S., Kholodilov, N., Greene, L. A., and Burke, R. E. (2005) CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J Neurochem 95:974–86.

    Article  PubMed  CAS  Google Scholar 

  • Siman, R., Flood, D. G., Thinakaran, G., and Neumar, R.W. (2001) Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons: Effect of an Alzheimer’s disease-linked presenilin-1 knock-in mutation. J Biol Chem 276:44736–43.

    Article  PubMed  CAS  Google Scholar 

  • Siu, F., Bain, P. J., LeBlanc-Chaffin, R., Chen, H., and Kilberg, M. S. (2002) ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem 277:24120–7.

    Article  PubMed  CAS  Google Scholar 

  • Song, M. S., Park, Y. K., Lee, J. H., and Park, K. (2001) Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade. Cancer Res 61:8322–30.

    PubMed  CAS  Google Scholar 

  • Soung, Y. H., Lee, J. W., Kim, S. Y., Park, W. S., Nam, S. W., Lee, J. Y., Yoo, N. J., and Lee, S. H. (2004) Somatic mutations of CASP3 gene in human cancers. Hum Genet 115:112–5.

    Article  PubMed  CAS  Google Scholar 

  • Sriburi, R., Jackowski, S., Mori, K., and Brewer, J. W. (2004) XBP1: A link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 167:35–41.

    Article  PubMed  CAS  Google Scholar 

  • Strom, T. M., Hortnagel, K., Hofmann, S., Gekeler, F., Scharfe, C., Rabl, W., Gerbitz, K. D., and Meitinger, T. (1998) Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 7:2021–8.

    Article  PubMed  CAS  Google Scholar 

  • Sun, M., Rothermel, T. A., Shuman, L., Aligo, J. A., Xu, S., Lin, Y., Lamb, R. A., and He, B. (2004) Conserved cysteine-rich domain of paramyxovirus simian virus 5 V protein plays an important role in blocking apoptosis. J Virol 78:5068–78.

    Article  PubMed  CAS  Google Scholar 

  • Tamatani, M., Matsuyama, T., Yamaguchi, A., Mitsuda, N., Tsukamoto, Y., Taniguchi, M., Che, Y. H., Ozawa, K., Hori, O., Nishimura, H., Yamashita, A., Okabe, M., Yanagi, H., Stern, D. M., Ogawa, S., and Tohyama, M. (2001) ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat Med 7:317–23.

    Article  PubMed  CAS  Google Scholar 

  • Tardif, K. D., Mori, K., Kaufman, R. J., and Siddiqui, A. (2004) Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. J Biol Chem 279:17158–64.

    Article  PubMed  CAS  Google Scholar 

  • Tessitore, A., Del, P. M., Sano, R., Ma, Y., Mann, L., Ingrassia, A., Laywell, E. D., Steindler, D. A., Hendershot, L. M., and D’Azzo, A. (2004) G(M1)-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15:753–66.

    Article  PubMed  CAS  Google Scholar 

  • Tirasophon, W., Welihinda, A. A., and Kaufman, R. J. (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12:1812–24.

    Article  PubMed  CAS  Google Scholar 

  • Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S., and Walter, P. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–58.

    Article  PubMed  CAS  Google Scholar 

  • Ubeda, M., Wang, X. Z., Zinszner, H., Wu, I., Habener, J. F., and Ron, D. (1996) Stressinduced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol 16:1479–89.

    PubMed  CAS  Google Scholar 

  • van Anken, E., Romijn, E. P., Maggioni, C., Mezghrani, A., Sitia, R., Braakman, I., and Heck, A. J. (2003) Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 18:243–53.

    Article  PubMed  Google Scholar 

  • Vasudevan, K. M., Gurumurthy, S., and Rangnekar, V. M. (2004) Suppression of PTEN expression by NF-kappa B prevents apoptosis. Mol Cell Biol 24:1007–21.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. Y., Mayo, M.W., Korneluk, R. G., Goeddel, D. V., and Baldwin, A. S., Jr. (1998a) NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–3.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. G., Pathan, N., Ethell, I. M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., McKeon, F., Bobo, T., Franke, T. F., and Reed, J. C. (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–43.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.-Z., Harding, H. P., Zhang, Y., Jolicoeur, E. M., Kuroda, M., and Ron, D. (1998b) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17:5708–17.

    Article  PubMed  CAS  Google Scholar 

  • Waris, G., Tardif, K. D., and Siddiqui, A. (2002) Endoplasmic reticulum (ER) stress: Hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-kappaB and STAT-3. Biochem Pharmacol 64:1425–30.

    Article  PubMed  CAS  Google Scholar 

  • Watowich, S. S., Morimoto, R. I., and Lamb, R. A. (1991) Flux of the paramyxovirus hemagglutinin-neuraminidase glycoprotein through the endoplasmic reticulum activates transcription of the GRP78-BiP gene. J Virol 65:3590–7.

    PubMed  CAS  Google Scholar 

  • Wiest, D. L., Burkhardt, J. K., Hester, S., Hortsch, M., Meyer, D. I., and Argon, Y. (1990) Membrane biogenesis during B cell differentiation: Most endoplasmic reticulum proteins are expressed coordinately. J Cell Biol 110:1501–11.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Bailly-Maitre, B., and Reed, J. C. (2005) Endoplasmic reticulum stress: Cell life and death decisions. J Clin Invest 115:2656–64.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, M., Tomida, A., Yun, J., Cai, B., Yoshikawa, H., Taketani, Y., and Tsuruo, T. (1999) Cellular sensitization to cisplatin and carboplatin with decreased removal of platinum-DNAadduct by glucose-regulated stress. Cancer Chemother Pharmacol 44:59–64.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K., Ichijo, H., and Korsmeyer, S. J. (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–78.

    PubMed  CAS  Google Scholar 

  • Yan, W., Frank, C. L., Korth, M. J., Sopher, B. L., Novoa, I., Ron, D., and Katze, M. G. (2002) Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci U S A 99:15920–5.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Turner, R. S., and Gaut, J. R. (1998) The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Abeta40 and Abeta42 secretion. J Biol Chem 273:25552–5.

    Article  PubMed  CAS  Google Scholar 

  • Ye, J., Rawson, R. B., Komuro, R., Chen, X., Dave, U. P., Prywes, R., Brown, M. S., and Goldstein, J. L. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–64.

    Article  PubMed  CAS  Google Scholar 

  • Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and Tohyama, M. (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276:13935–40.

    PubMed  CAS  Google Scholar 

  • Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741–9.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–91.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., and Mori, K. (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–71.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., and Mori, K. (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755–67.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Oku, M., Suzuki, M., and Mori, K. (2006) pXBP1(U) encoded in XBP1 premRNA negatively regulates UPR activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172:562–575.

    Article  CAS  Google Scholar 

  • Yun, J., Tomida, A., Nagata, K., and Tsuruo, T. (1995) Glucose-regulated stresses confer resistance to VP-16 in human cancer cells through a decreased expression of DNA topoisomerase II. Oncol Res 7:583–90.

    PubMed  CAS  Google Scholar 

  • Zhang, P., McGrath, B., Li, S., Frank, A., Zambito, F., Reinert, J., Gannon, M., Ma, K., McNaughton, K., and Cavener, D. R. (2002) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22:3864–74.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P. L., Lun, M., Teng, J., Huang, J., Blasick, T. M., Yin, L., Herrera, G. A., and Cheung, J. Y. (2004) Preinduced molecular chaperones in the endoplasmic reticulum protect cardiomyocytes from lethal injury. Ann Clin Lab Sci 34:449–57.

    PubMed  CAS  Google Scholar 

  • Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J.L., and Ron, D. (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liao, N., Hendershot, L.M. (2007). Unfolded Protein Response: Contributions to Development and Disease. In: Calderwood, S.K. (eds) Cell Stress Proteins. Protein Reviews, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39717-7_4

Download citation

Publish with us

Policies and ethics