Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 129))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, O., Roger, S., Glinec, Y., Loulergue, J.C., Etchepare, J., Boulmer-Leborgne, C., Perrière, J., and Millon, E., 2003, Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers, Appl. Phys. A 76: 319–323.

    Article  ADS  Google Scholar 

  • AlWazzan, R.A., Lewis, C.L.S. and Morrow, T., 1996, A technique for mapping three-dimensional number densities of species in laser produced plasmas, Rev. Sci Instrum. 67: 85–88.

    Article  ADS  Google Scholar 

  • Amoruso, S., 1999, Modeling of UV pulsed-laser ablation of metallic targets, Appl. Phys. A 69: 323–332.

    Article  ADS  Google Scholar 

  • Amoruso, S., Bruzzese, R., Spinelli, N. and Velotta, R., 1999, Characterization of laser-ablation plasmas, J. Phys. B 32: R131–R172.

    Article  ADS  Google Scholar 

  • Amoruso, S., Wang., X., Altucci, C., de Lisio, C., Armenante, M., Bruzzese R., and Velotta, R., 2000, Thermal and non-thermal ion emission during high-fluence femtosecond laser ablation of metallic targets, Appl. Phys. Lett. 77: 3728–3730.

    Article  ADS  Google Scholar 

  • Amoruso, S., Bruzzese, R., Spinelli, N., Velotta, R., Vitiello, M. and Wang, X., 2003, Dynamics of laser-ablated MgB2 plasma expanding in argon probed by optical emission spectroscopy, Phys. Rev. B 67: 224503-1–224503-11.

    Article  ADS  Google Scholar 

  • Amoruso, S., Toftmann, B., Schou, J., Velotta, R. and Wang, X., 2004a, Diagnostics of laser ablated plasma plumes, Thin Solid Films 453–454: 562–572.

    Article  Google Scholar 

  • Amoruso, S., Toftmann, B. and Schou, J., 2004b, Thermalization of a UV laser ablation plume in a background gas: from directed to diffusionlike flow, Phys. Rev. E 59: 056403-1–056403-6.

    ADS  Google Scholar 

  • Amoruso, S., Bruzzese, R., Spinelli, N., Velotta, R., Vitiello, M., Wang, X., Ausanio, G., Iannotti, V. and Lanotte, L., 2004c, Generation of silicon nanoparticles via femtosecond laser ablation in vacuum, Appl. Phys. Lett. 84: 4502–4504.

    Article  ADS  Google Scholar 

  • Amoruso, S., Altucci, C., Bruzzese, R., de Lisio, C., Spinelli, N., Velotta, R., Vitiello M., and Wang, X., 2004d, Study of the plasma plume generated during near IR femtosecond laser irradiation of silicon targets, Appl. Phys. A 79: 1377–1380.

    ADS  Google Scholar 

  • Amoruso S., Bruzzese R., Spinelli N., Velotta R., Vitiello M. and Wang X., 2004e, Emission of nanoparticles during ultrashort laser irradiation of silicon targets, Europhys. Lett. 67, 404–410.

    Article  ADS  Google Scholar 

  • Amoruso, S. and Vitiello, M., 2005, Characterization of plumes produced during ultrashort laser ablation of metals and semicoductors, in Laser Physics and Applications, Atanasov, P. A., Gateva, S.V., Avramov, L. A. and Serafetinides, A. A. eds., Proceedings SPIE vol. 5830, Bellingham, USA, pp. 11–20.

    Google Scholar 

  • Amoruso, S., Bruzzese, R., Velotta, R., Spinelli, N., Vitiello, M. and Wang, X., 2005a, Characterization of LaMnO3 laser ablation in oxygen by ion probe and optical emission spectroscopy, Appl. Surf. Sci. 248: 45–49.

    Article  ADS  Google Scholar 

  • Amoruso, S., Vitiello, M. and Wang, X., 2005b, Femtosecond laser ablation and deposition, in Pulsed Laser Deposition of Optoelectronic Films, Popescu, M. ed., Series Optoelectronic Materials and Devices, INOE, Bucharest, pp. 41–80.

    Google Scholar 

  • Amoruso, S., Bruzzese, R., Vitiello, M, Nedialkov, N. N. and Atanasov, P. A, 2005c, Experimental and theoretical investigation of femtosecond laser ablation of aluminium in vacuum, J. Appl. Phys. 98: 044907-1–044907-7.

    Article  ADS  Google Scholar 

  • Amoruso, S., Sambri, A., Vitiello, M. and Wang, X., 2006a, Propagation of LaMnO3 laser ablation plume in oxygen gas, Appl. Surf. Sci. (in press).

    Google Scholar 

  • Amoruso, S., Ausanio, G., Bruzzese, R., Gragnaniello, L., Lanotte, L., Vitiello, M. and Wang, X., 2006b, Characterization of laser ablatioin of solid targets with near-infrared pulses of 100 fs and 1 ps duration, Appl. Surf. Sci. (in press).

    Google Scholar 

  • Anisimov, S. I., Bäuerle, D. and Luk’yanchuk, B. S., 1993, Gas dynamics and film profiles in pulsed-laser deposition of materials, Phys. Rev. B 48: 12076–12081.

    Article  ADS  Google Scholar 

  • Anisimov, S. I., Luk’yanchuk, B. S., and Luches, A.., 1996, An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime, Appl. Surf. Sci. 96–98: 24–32.

    Article  Google Scholar 

  • Anisimov, S. I., and Luk’yanchuk, B. S., 2002, Selected problems of laser ablation theory, Physics-Uspekhi, 45:293–324.

    Article  ADS  Google Scholar 

  • Arnold, N., Gruber, J. and Heitz, J., 1999, Spherical expansion of the vapor plume into ambient gas: an analytical model, Appl. Phys. A 69: S87–S93.

    Article  ADS  Google Scholar 

  • Ashfold, M. N. R., Claeyssens, F., Fuge, G. M. and Henley, S. J., 2004, Pulsed Laser Ablation and Deposition of Thin Films, Chem. Soc. Rev. 33: 23–31.

    Article  Google Scholar 

  • Ausanio, G., Barone, A. C., Iannotti, V., Lanotte, L., Amoruso, S., Bruzzese, R. and Vitiello, M., 2004, Magnetic and morphological characteristics of nickel nanoparticles films produced by femtosecond laser ablation, Appl. Phys. Lett. 85: 4103–4105.

    Article  ADS  Google Scholar 

  • Banks P.S., Dinh L., Stuart B.C., Feit M.D., Komashko A.M., Rubenchik A.M., Perry M.D. and McLean W., 1999, Short-pulse laser deposition of diamond-like carbon thin films, Appl. Phys. A 69: S347–S353.

    Article  ADS  Google Scholar 

  • Bulgakov, A.V. and Bulgakova, N. M., 1998, Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet, J. Phys. D. Appl. Phys. 31: 693–703.

    Article  ADS  Google Scholar 

  • Chen, F. F. 1965, Electric probes, Plasma Diagnostic techniques, Huddlestone, R. H. and Leonard, S. L., eds., Academic Press, New York, pp. 113–200.

    Google Scholar 

  • Chrisey, D. B. and Hubler, G. K., 1994, Pulsed Laser Deposition of Thin Films, eds, Wiley, New York.

    Google Scholar 

  • Dijkkamp, D., Venkatesan, T., Wu, X.D, Shafeen, S.A., Jishraw, N., Minley, Y. H., McLean, W. L. and Croft, M., 1987, Prepation of Y-Ba-Cu oxide superconductor thin-films using pulsed laser evaporation from high-Tc bulk material, Appl. Phys. Lett. 51: 619–621.

    Article  ADS  Google Scholar 

  • Dinh, L. N., Hayes, S. E., Wynne, A. E., Wall, M. A., Saw, C. K., Stuart, B. C., Balooch, M., Paravastu, A. K. and Reimer, J. A., 2002, Properties of GaAs nanoclusters deposited by femtosecond laser, J. Mat. Sci. 37: 3953–3958.

    Article  Google Scholar 

  • Doggett, B. and Lunney, J.G., unpublished.

    Google Scholar 

  • Doggett, B., Budtz-Joergensen, C., Lunney, J.G., Sheerin, P. and Turner, T.T., 2005, Behaviour of a planar Langmuir probe in a laser ablation plasma, Appl. Surf. Sci. 247: 134–138.

    Article  ADS  Google Scholar 

  • Dyer, P. E., Issa, A. and Key, P. H., 1990, Dynamics of excimer laser ablation of superconductors in an oxygen environment, Appl. Phys. Lett. 57: 186–188.

    Article  ADS  Google Scholar 

  • Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S. and Lereah Y., 2004, Synthesis of nanoparticles with femtosecond laser pulses, Phys. Rev. B 69: 144119-1–144119-6.

    Article  ADS  Google Scholar 

  • Geohegan, D. B., 1992 Physics and diagnostics of laser ablation plume propagation for high-Tc superconductor film growth, Thin Solid Films 220:138–145.

    Article  ADS  Google Scholar 

  • Geohegan, D. B. and Puretzky, A: A., 1996, Laser ablation plume thermalization dynamics in background gases: combined imaging, optical absorption and emission spectroscopy, and ion probe measurements, Appl. Surf. Sci. 96–98:131–138.

    Article  Google Scholar 

  • Glover, T. E., 2003, Hydrodynamics of particle formation following femtosecond laser ablation, J. Opt. Soc. Am. B 20: 125–131.

    Article  ADS  Google Scholar 

  • Gonzalo, J., Vega, F. and Afonso, C. N., 1996, Plasma expansion dynamics in reactive and inert atmospheres during laser ablation of Bi(2)Sr(2)Ca(2)O(7-y), J. Appl. Phys. 77:6588–6593.

    Article  ADS  Google Scholar 

  • Gorbunoff, A., 2002, Laser-Assisted Synthesis of Nanostructured Materials, Fortschritt-Berichte VDI 357, VDI verlag, Düsseldorf.

    Google Scholar 

  • Grojo, D., Hermann, J. and Perrone, A., 2005, Plasma analysis during femtosecond laser ablation of Ti, Zr, and Hf, J. Appl. Phys. 97: 063306-1–063306-9.

    Article  ADS  Google Scholar 

  • Hansen, T. N., Schou, J. and Lunney, J. G., 1997, Angular distributions of silver ions and neutrals emitted in vacuum by laser ablation, Europhys. Lett. 40: 441–446.

    Article  ADS  Google Scholar 

  • Hansen, T. N., Schou, J. and Lunney, J. G., 1999, Langmuir probe study of plasma expansion in pulsed laser ablation, Appl. Phys. A 69: S601–S604.

    Article  ADS  Google Scholar 

  • Harilal, S. S., Bindhu, C. V., Tillack, M. S., Najmabadi, F. and Gaeris, A. C., 2002, Plume splitting and sharpening in laser-produced aluminium plasma, J. Phys. D. Appl. Phys 35: 2935–2938.

    Article  ADS  Google Scholar 

  • Harilal, S. S., Bindhu, C. V., Tillack, M. S., Najmabadi, F. and Gaeris, A. C., 2003, Internal structure and expansion dynamics of laser ablation plumes into ambient gases, J. Appl. Phys. 93: 2380–2388.

    Article  ADS  Google Scholar 

  • Harris, T. J., 1963, High-speed photographs of laser-induced heating, IBM J. Res. Develop. 7: 342–345.

    Article  Google Scholar 

  • Hermann, J., Thomas, A. L., Boulmer-Leborgne, C., Dubreil, B., Giorgi, M. L. De, Perrone, A., Luches, A. and Mihailescu, I. N. 1995, Plasma diagnostics in pulsed laser TiN layer deposition, J. Appl. Phys. 77: 2928–2936.

    Article  ADS  Google Scholar 

  • Heszler P., Landström, L., Lindstam M. and Carlsson J.-O., 2001, Light-emission from tungsten nanoparticles during laser-assisted chemical vapour deposition of tungsten, J. Appl. Phys. 89: 396–3970.

    Article  ADS  Google Scholar 

  • Hubler, G. K., 1992, Pulsed laser deposition, MRS Bulletin, Vol. XVII, No. 2, Feb. 92.

    Google Scholar 

  • Itina, T. E., Marine, W. and Autric, M., 1997, Monte Carlo simulation of pulsed laser ablation from two-component target into diluted ambient gas, J. Appl. Phys. 82: 3536–3542.

    Article  ADS  Google Scholar 

  • Itina, T. E., Hermann, J., Delaporte, P. and Sentis, M., 2002, Laser-generated plasma plume expansion: Combined continuous-microscopic modelling, Phys. Rev. E 66:066406-1–066406-12.

    Article  ADS  Google Scholar 

  • Kelly, R., Miotello, A., Mele, A. and Giardini Giudoni, A., 1998, Plume formation and characterization in laser-surface interactions, Laser Ablation and Desorption, Miller, J. C. and Haglund, R. F. eds., Experimental Methods in the Physical Sciences vol. 30. Academic Press, New York, pp. 225–289.

    Google Scholar 

  • Komashko, A. M., Feit, M. D. and Rubenchik, A. M., 2000, Modeling of long term behavior of ablation plumes produced with ultrashort laser pulses, SPIE Vol. 3935, Laser plasma generation and diagnostics, pp. 97–103.

    Google Scholar 

  • Koopman, D. W., 1971, Langmuir probe and microwave measurements of the properties of streaming plasmas generated by focused laser pulses, Phys. Fluids 14: 1707–1716.

    Article  ADS  Google Scholar 

  • Li, P., Lim, D. and Mazumder, J., 2002, Diagnostics of nanosecond dynamics of the plasma produced during KrF excimer laser ablation of zirconia in vacuum, J. Appl. Phys. 92:666–671.

    Article  ADS  Google Scholar 

  • Lindley, R. A., Gilgenbach, R. M., Ching, C. H., Lash, J. S., Doll, G. L., 1994, Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments, J. Appl. Phys. 76: 5457–5472.

    Article  ADS  Google Scholar 

  • Lowndes, D. H., 1998, Growth and doping of compound semiconductor films by pulsed laser ablation, Laser Ablation and Desorption, Miller, J. C. and Haglund, R. F. eds., Experimental Methods in the Physical Sciences vol. 30. Academic Press, New York, pp. 475–571.

    Google Scholar 

  • Lunney, J. G. and Jordan, R., 1998, Pulsed laser ablation of metals, Appl. Surf. Sci., 127–129:941–946.

    Article  Google Scholar 

  • Millon, E., Perrière, J., Déforneau, R. M., Déforneau, D., Albert, O. and Etchepare, J., 2003, Femtosecond pulsed-laser deposition of BaTiO3, Appl. Phys. A 77:73–80.

    Article  ADS  Google Scholar 

  • Nolte, S., Kamlage, G., Korte, F., Bauer, T., Wagner, T., Ostendorf, A., Fallnich, C. and Welling, H., 2000, Microstructuring with femtosecond lasers, Adv. Eng. Mat. 2: 23–27.

    Article  Google Scholar 

  • Perez, D. and Lewis, L. J., 2003, Molecular-dynamics study of ablation of solids under femtosecond laser pulses, Phys. Rev. B 67: 184102-1–184102-15.

    Article  ADS  Google Scholar 

  • Phipps, Jr., C. R., Turner, T. P., Harrison, R. F., York, G. W., Osborne, W. Z., Anderson, G. K., Corlis, X. F., Haynes, L. C., Steele, H. S., Spicochi, K. C. and King, T. R., 1988, Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers, J. Appl. Phys: 64, 1083–1098.

    Article  ADS  Google Scholar 

  • Proyer, S. and Stangl, E., 1995, Time-integrated photography of laser-induced plasma plumes, Appl. Phys. A 60: 573–580.

    Article  ADS  Google Scholar 

  • Qian, F., Craciun, V., Singh, R. K., Dutta, S. D. and Pronko, P. P., 1999, High intensity femtosecond laser deposition of diamond-like carbon thin films, J. Appl. Phys. 86: 2281–2290.

    Article  ADS  Google Scholar 

  • Saenger, K. L. 1994, Angular distribution of ablated material, Pulsed Laser Deposition of Thin Films, Chrisey, D. B. and Hubler, G. K. eds., Wiley, New York, pp. 199–227.

    Google Scholar 

  • Schou, J. 2006, Laser beam-solid interactions: Fundamental aspects, in: Materials Surface Processing by Directed Energy Techniques, Pauleau, I. ed., Elsevier, pp. 33–62.

    Google Scholar 

  • Scuderi, D., Albert, O., Moreau, D., Pronko, P. P. and Etchepare, J., 2005, Interaction of a laser plume with a second time delayed femtosecond pulse, Appl. Phys. Lett. 86: 071502-1–071502-3.

    Article  ADS  Google Scholar 

  • Sibold, D. and Urbassek, H. M., 1991, Kinetic study of pulsed desorption flows into vacuum, Phys. Rev. A 43: 6722–6734.

    Article  ADS  Google Scholar 

  • Singh, R. K. and Narayan, J., 1990 Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model, Phys. Rev. B 41: 8843–8859.

    Article  ADS  Google Scholar 

  • Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., von der Linde, D., Oparin, A., Meyerter-Vehn, J. and Anisimov, S. I., 1998, Transient states of matter during short pulse laser ablation, Phys. Rev. Lett. 81:224–227.

    Article  ADS  Google Scholar 

  • Thestrup, B., Toftmann, B., Schou, J., Doggett, B. and Lunney, J. G., 2002, Ion dynamics in laser ablation plumes from selected metals at 355 nm, Appl. Surf. Sci. 197–198:175–180.

    Article  Google Scholar 

  • Toftmann, B., Schou, J., T. N. Hansen and Lunney, J. G., 2000, Angular distribution of electron temperature and density in a laser-ablation plume, Phys. Rev. Lett. 84: 3998–4001.

    Article  ADS  Google Scholar 

  • Toftmann, B., Schou, J. and Lunney, J. G., 2003, Dynamics of the plume produced by nanosecond ultraviolet laser ablation of metals, Phys. Rev. B 67: 104101-1–104101-5.

    Article  ADS  Google Scholar 

  • Toftmann, B., Amoruso, S., Schou, J. and Lunney, J. G., 2006, The propagation of laser ablation plume ions in a background gas (unpublished).

    Google Scholar 

  • Tyuina, M., and Leppävuori, S., 2000, Effects of laser fluence, size, and shape of the laser focal spot in pulsed laser deposition using a multielement target, J. Appl. Phys. 87 8132–8142.

    Article  ADS  Google Scholar 

  • VanRompay, P. A., Nantel, M. and Pronko, P. P., 1998, Pulse-contrast effects on energy distributions of C1+ to C4+ ions for high-intensity 100-fs laser-ablation plasmas, Appl. Surf. Sci. 129:1023–1028.

    Article  Google Scholar 

  • Vertes, A., Gijbels, R. and Adams, F., 1993, Laser Ionization Mass Analysis, Chemical Analysis Series, vol 124, John Wiley, New York.

    Google Scholar 

  • Vidal, F., Johnston, T. W., Laville, S., Barthelemy, O., Chaker, M., Le Drogoff, B., Margot, J. and Sabsabi, M, 2001, Critical-point phase separation in laser ablation of conductors, Phys. Rev. Lett. 86: 2573–2576.

    Article  ADS  Google Scholar 

  • Weaver, I. and Lewis, C. L. S.,1996, Polar distribution of ablated atomic material during pulsed laser deposition of Cu in vacuum: Dependence on foused laser spot size and power density, J. Appl. Phys. 79: 7216–7222.

    Article  ADS  Google Scholar 

  • Willmott, P. R. and Huber, J. R., 2000, Pulsed laser vaporization and deposition, Rev. Mod. Phys. 72:315–328.

    Article  ADS  Google Scholar 

  • Wood, R. F., Chen, K. R., Leboeuf, J. N., Puretzky, A. A. and Geohegan, D. B. 1997, Dynamics of plume propagation and splitting during pulsed-laser ablation, Phys. Rev. Lett. 79: 1571–1574.

    Article  ADS  Google Scholar 

  • Wood, R. F., Leboeuf, J. N., Geohegan, D. B., Puretzky, A. A. and Chen, K.R. 1998, Dynamics of plume propagation and splitting during pulsed-laser ablation of Si in He and Ar, Phys. Rev. B 58: 1533–1543.

    Article  ADS  Google Scholar 

  • Ye, M. and Grigoropoulos, C. P., 2001, Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium, J. Appl. Phys. 89: 5183–5190.

    Article  ADS  Google Scholar 

  • Zel’dovich, Ya. R. and Raizer, Yu. P., 2001, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, Cambridge, Massachusetts.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Schou, J., Amoruso, S., Lunney, J.G. (2007). Plume Dynamics. In: Phipps, C. (eds) Laser Ablation and its Applications. Springer Series in Optical Sciences, vol 129. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30453-3_4

Download citation

Publish with us

Policies and ethics