Skip to main content

Evolutionary Phylogenetic Networks: Models and Issues

  • Chapter
  • First Online:
Problem Solving Handbook in Computational Biology and Bioinformatics

Abstract

Phylogenetic networks are special graphs that generalize phylogenetic trees to allow for modeling of non-treelike evolutionary histories. The ability to sequence multiple genetic markers from a set of organisms and the conflicting evolutionary signals that these markers provide in many cases, have propelled research and interest in phylogenetic networks to the forefront in computational phylogenetics. Nonetheless, the term ‘phylogenetic network‘ has been generically used to refer to a class of models whose core shared property is tree generalization. Several excellent surveys of the different flavors of phylogenetic networks and methods for their reconstruction have been written recently. However, unlike these surveys, this chapte focuses specifically on one type of phylogenetic networks, namely evolutionary phylogenetic networks, which explicitly model reticulate evolutionary events. Further, this chapter focuses less on surveying existing tools, and addresses in more detail issues that are central to the accurate reconstruction of phylogenetic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Annals of Combinatorics 5, 1–13 (2001)

    Article  MathSciNet  Google Scholar 

  2. Baroni, M., Grunewald, S., Moulton, V., Semple, C.: Bounding the number of hybridization events for a consistent evolutionary history. J. Math. Biol. 51, 171–182 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baroni, M., Semple, C., Steel, M.: A framework for representing reticulate evolution. Annals of Combinatorics 8(4), 391–408 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beiko, R., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evolutionary Biology 6 (2006)

    Article  Google Scholar 

  5. Bergthorsson, U., Adams, K., Thomason, B., Palmer, J.: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003)

    Article  Google Scholar 

  6. Bergthorsson, U., Richardson, A., Young, G., Goertzen, L., Palmer, J.: Massive horizontal transfer of mitochondrial genes from diverse land plant donors to basal angiosperm Amborella. Proc. Nat’l Acad. Sci., USA 101, 17,747–17,752 (2004)

    Google Scholar 

  7. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8, 409–423 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: A distance metric for a class of treesibling phylogenetic networks. Bioinformatics 24(13), 1481–1488 (2008)

    Article  Google Scholar 

  9. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks I: Generalizations of the robinson-foulds metric. IEEE/ACM Transactions on Computational Biology and Bioinformatics 6(1), 1–16 (2009)

    Article  Google Scholar 

  10. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks II: Nodal and triplets metrics. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2009)

    Google Scholar 

  11. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: On Nakhleh’s latest metric for phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2009). To appear

    Google Scholar 

  12. Cardona, G., Rosselló, F., Valiente, G.: Extended Newick: It is time for a standard representation of phylogenetic networks. BMC Bioinformatics 9, 532 (2008)

    Article  Google Scholar 

  13. Cardona, G., Rossello, F., Valiente, G.: A Perl package and an alignment tool for phylogenetic networks. BMC Bioinformatics 9(1), 175 (2008)

    Article  Google Scholar 

  14. Cardona, G., Rosselló, F., Valiente, G.: Tripartitions do not always discriminate phylogenetic networks. Mathematical Biosciences 211(2), 356–370 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2009). To appear

    Google Scholar 

  16. Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees is hard. Proc. 9th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB05) pp. 296–310 (2005)

    Google Scholar 

  17. Darwin, C.: On the origin of species by means of natural selection. J.Murray, London (1859)

    Google Scholar 

  18. Day, W.: Computationally difficult parsimony problems in phylogenetic systematics. Journal of Theoretical Biology 103, 429–438 (1983)

    Article  MathSciNet  Google Scholar 

  19. Degnan, J., Rosenberg, N.: Discordance of species trees with their most likely gene trees. PLoS Genetics 2, 762–768 (2006)

    Article  Google Scholar 

  20. Doolittle, W.: Lateral genomics. Trends in Biochemical Sciences 24(12), M5–M8 (1999)

    Article  Google Scholar 

  21. Doolittle, W.: Phylogenetic classification and the universal tree. Science 284, 2124–2129 (1999)

    Article  Google Scholar 

  22. Edwards, S.: Is a new and general theory of molecular systematics emerging? Evolution 63(1), 1–19 (2009)

    Article  Google Scholar 

  23. Ellstrand, N., Whitkus, R., Rieseberg, L.: Distribution of spontaneous plant hybrids. Proc. Nat’l Acad. Sci., USA 93(10), 5090–5093 (1996)

    Article  Google Scholar 

  24. Estabrook, G., McMorris, F.: When are two qualitative taxonomic characters compatible? J. Math. Biosci. 4, 195–200 (1977)

    MATH  MathSciNet  Google Scholar 

  25. Ewens, W.: Mathematical Population Genetics. Springer-Verlag, Berlin (1979)

    MATH  Google Scholar 

  26. Felsenstein, J.: Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27, 401–410 (1978)

    Article  Google Scholar 

  27. Felsenstein, J.: Alternative methods of phylogenetic inference and their interrelationship. Systematic Zoology 28, 49–62 (1979)

    Article  Google Scholar 

  28. Felsenstein, J.: Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

    Article  Google Scholar 

  29. Fitch, W.: Toward defining the course of evolution: Minimum change for a specified tree topology. Syst. Zool. 20, 406–416 (1971)

    Article  Google Scholar 

  30. Foulds, L., Graham, R.: The Steiner problem in phylogeny is NP-complete. Adv. Appl.Math. 3, 43–49 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gambette, P.: Who is who in phylogenetic networks: Articles, authors and programs. http://www.lirmm.fr/~gambette/PhylogeneticNetworks/

  32. Gemeinholzer, B.: Phylogenetic networks. In: B.H. Junker, F. Schreiber (eds.) Analysis of Biological Networks, pp. 255–282. John Wiley and Sons Ltd (2008)

    Google Scholar 

  33. Goloboff, P.: Calculating SPR distances between trees. Cladistics 24, 591–597 (2007)

    Article  Google Scholar 

  34. Griffiths, R., Marjoram, P.: An ancestral recombination graph. In: P. Donnelly, S. Tavare (eds.) Progress in Population Genetics and Human Evolution, IMA Volumes in Mathematics and its Applications, vol. 87, pp. 257–270. Springer-Verlag, Berlin (1997)

    Google Scholar 

  35. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gusfield, D., Bansal, V., Bafna, V., Song, Y.: A decomposition theory for phylogenetic networks and incompatible characters. Journal of Computational Biology 14, 1247–1272 (2007)

    Article  MathSciNet  Google Scholar 

  37. Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proceedings of Computational Systems Bioinformatics (CSB 03) (2003)

    Google Scholar 

  38. Hallett, M., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: Proc. 5th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB01), pp. 149–156. ACMPress, New York (2001)

    Google Scholar 

  39. Hao, W., Golding, G.: Patterns of bacterial gene movement. Mol. Biol. Evol. 21(7), 1294–1307 (2004)

    Article  Google Scholar 

  40. Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosciences 98, 185–200 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hein, J.: A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36, 396–405 (1993)

    Article  Google Scholar 

  42. Holder, M., Anderson, J., Holloway, A.: Difficulties in detecting hybridization. Systematic Biology 50(6), 978982 (2001)

    Article  Google Scholar 

  43. Holland, B., Benthin, S., Lockhart, P., Moulton, V., Huber, K.: Using supernetworks to distinguish hybridization from lineage-sorting. BMC Evolutionary Biology 8, 202 (2008)

    Article  Google Scholar 

  44. Hudson, R.: Properties of the neutral allele model with intergenic recombination. Theor. Popul. Biol. 23, 183–201 (1983)

    Article  MATH  Google Scholar 

  45. Hudson, R., Kaplan, N.: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985)

    Google Scholar 

  46. Humphries, P., Semple, C.: Note on the hybridization number and subtree distance in phylogenetics. Applied Mathematics Letters (2009). In press

    Google Scholar 

  47. Huson, D.H.: Split networks and reticulate networks. In: O. Gascuel, M. Steel (eds.) Reconstructing Evolution, New Mathematical and Computational Advances, pp. 247–276. Oxford University Press (2007)

    Google Scholar 

  48. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2), 254–267 (2006)

    Article  Google Scholar 

  49. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23, e123–e128 (2006). Proceedings of the European Conference on Computational Biology (ECCB 06)

    Article  Google Scholar 

  50. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22(21), 2604–2611 (2006)

    Article  Google Scholar 

  51. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by the maximum parsimony criterion: A case study. Molecular Biology and Evolution 24(1), 324–337 (2007)

    Article  Google Scholar 

  52. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: A new linear-time heuristic algorithm for computing the parsimony score of phylogenetic networks: Theoretical bounds and empirical performance. In: I. Mandoiu, A. Zelikovsky (eds.) Proceedings of the International Symposium on Bioinformatics Research and Applications, Lecture Notes in Bioinformatics, vol. 4463, pp. 61–72 (2007)

    Google Scholar 

  53. Kanj, I., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theoretical Computer Science 401, 153–164 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  54. Kanj, I., Nakhleh, L., Xia, G.: The compatibility of binary characters on phylogenetic networks: Complexity and parameterized algorithms. Algorithmica 51, 99–128 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61, 893–903 (1969)

    Google Scholar 

  56. Kimura, M., Crow, J.: The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964)

    Google Scholar 

  57. Kingman, J.F.C.: The coalescent. Stochast. Proc. Appl. 13, 235–248 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  58. Kurland, C., Canback, B., Berg, O.: Horizontal gene transfer: A critical view. Proc. Nat’l Acad. Sci., USA 100(17), 9658–9662 (2003)

    Article  Google Scholar 

  59. Lathrop, G.: Evolutionary trees and admixture: Phylogenetic inference when some populations are hybridized. Ann. Hum. Genet. 46, 245–255 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  60. Linder, C., Rieseberg, L.: Reconstructing patterns of reticulate evolution in plants. American Journal of Botany 91, 1700–1708 (2004)

    Article  Google Scholar 

  61. Linder, C.R., Moret, B.M.E., Nakhleh, L., Warnow, T.: Network (reticulate) evolution: Biology, models, and algorithms. In: The Pacific Symposium on Biocomputing (2004)

    Google Scholar 

  62. MacLeod, D., Charlebois, R., Doolittle, F., Bapteste, E.: Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement. BMC Evolutionary Biology 5 (2005)

    Article  Google Scholar 

  63. Maddison, W.: Gene trees in species trees. Systematic Biology 46(3), 523–536 (1997)

    Google Scholar 

  64. Makarenkov, V., Kevorkov, D., Legendre, P.: Phylogenetic network construction approaches. In: Applied Mycology and Biotechnology, pp. 61–97 (2006)

    Google Scholar 

  65. Mallet, J.: Hybridization as an invasion of the genome. TREE 20(5), 229–237 (2005)

    Google Scholar 

  66. Mallet, J.: Hybrid speciation. Nature 446, 279–283 (2007)

    Article  Google Scholar 

  67. McClilland, M., Sanderson, K., Clifton, S., Latreille, P., Porwollik, S., Sabo, A., Meyer, R., Bieri, T., Ozersky, P., McLellan, M., Harkins, C.,Wang, C., Nguyen, C., Berghoff, A., Elliott, G., Kohlberg, S., Strong, C., Du, F., Carter, J., Kremizki, C., Layman, D., Leonard, S., Sun, H., Fulton, L., Nash, W., Miner, T., Minx, P., Delehaunty, K., Fronick, C., Magrini, V., Nhan, M., Warren, W., Florea, L., Spieth, J., Wilson, R.: Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of salmonella enterica that cause typhoid. Nature Genetics 36(12), 1268–1274 (2004)

    Article  Google Scholar 

  68. Meacham, C.: Theoretical and computational considerations of the compatibility of qualitative taxonomic characters. NATO ASI Series G1 on Numerical Taxonomy (1983)

    Google Scholar 

  69. Meng, C., Kubatko, L.: Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: A model. Theoretical Population Biology 75(1), 35–45 (2009)

    Article  Google Scholar 

  70. Moret, B., Nakhleh, L., Warnow, T., Linder, C., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks:Modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 13–23 (2004)

    Article  Google Scholar 

  71. Morin, M., Moret, B.: NetGen: Generating phylogenetic networks with diploid hybrids. Bioinformatics 22(15), 1921–1923 (2006)

    Article  Google Scholar 

  72. Morrison, D.A.: Networks in phylogenetic analysis: new tools for population biology. International Journal of Parasitology 35, 567–582 (2005)

    Article  Google Scholar 

  73. Mower, J., Stefanovic, S., Young, G., Palmer, J.: Gene transfer from parasitic to host plants. Nature 432, 165–166 (2004)

    Article  Google Scholar 

  74. Nakamura, Y., Itoh, T.,Matsuda, H., Gojobori, T.: Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genetics 36(7), 760–766 (2004)

    Article  Google Scholar 

  75. Nakhleh, L.: Phylogenetic networks. Ph.D. thesis, The University of Texas at Austin (2004)

    Google Scholar 

  76. Nakhleh, L.: A metric on the space of reduced phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2009). To appear

    Google Scholar 

  77. Nakhleh, L., Ringe, D., Warnow, T.: Perfect phylogenetic networks: A new methodology for reconstructing the evolutionary history of natural languages. LANGUAGE, Journal of the Linguistic Society of America 81(2), 382–420 (2005)

    Google Scholar 

  78. Nakhleh, L., Ruths, D.,Wang, L.: RIATA-HGT: A fast and accurate heuristic for reconstructing horizontal gene transfer. In: L. Wang (ed.) Proceedings of the Eleventh International Computing and Combinatorics Conference (COCOON 05), pp. 84–93 (2005). LNCS #3595

    Google Scholar 

  79. Nakhleh, L., Sun, J.,Warnow, T., Linder, R., Moret, B., Tholse, A.: Towards the development of computational tools for evaluating phylogenetic network reconstruction methods. In: Proceedings of the 8th Pacific Symposium on Biocomputing, pp. 315–326.World Scientific Pub. (2003)

    Google Scholar 

  80. Noor, M., Feder, J.: Speciation genetics: Evolving approaches. Nature Review Genetics 7, 851–861 (2006)

    Article  Google Scholar 

  81. Ochman, H., Lawrence, J., Groisman, E.: Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784), 299–304 (2000)

    Article  Google Scholar 

  82. Posada, D., Crandall, K.: The effect of recombination on the accuracy of phylogeny estimation. J. Mol. Evol. 54(3), 396–402 (2002)

    Google Scholar 

  83. Posada, D., Crandall, K., Holmes, E.: Recombination in evolutionary genomics. Annu. Rev. Genet. 36, 75–97 (2002)

    Article  Google Scholar 

  84. Pupko, T., Pe’er, I., Shamir, R., Graur, D.: A fast algorithm for joint reconstruction of ancestral amino-acid sequences. Mol. Biol. Evol. 17(6), 890–896 (2000)

    Google Scholar 

  85. Rieseberg, L., Baird, S., Gardner, K.: Hybridization, introgression, and linkage evolution. Plant Molecular Biology 42(1), 205–224 (2000)

    Article  Google Scholar 

  86. Rieseberg, L., Carney, S.: Plant hybridization. New Phytologist 140(4), 599–624 (1998)

    Article  Google Scholar 

  87. Rosenberg, N.: Gene genealogies. In: C. Fox, J.B. Wolf (eds.) Evolutionary Genetics: Concepts and Case Studies, chap. 15. Oxford Univ. Press University Press (2005)

    Google Scholar 

  88. Rosenberg, N., Tao, R.: Discordance of species trees with their most likely gene trees: The case of five taxa. Systematic Biology 57, 131–140 (2008)

    Article  Google Scholar 

  89. Sang, T., Zhong, Y.: Testing hybridization hypotheses based on incongruent gene trees. Systematic Biology 49(3), 422434 (2000)

    Google Scholar 

  90. Song, Y.: Properties of subtree-prune-and-regraft operations on totally-ordered phylogenetic trees. Annals of Combinatorics 10, 129–146 (2006)

    Article  MathSciNet  Google Scholar 

  91. Song, Y., Ding, Z., Gusfield, D., Langley, C., Wu, Y.: Algorithms to distinguish the role of gene-conversion from single-crossover recombination in the derivation of SNP sequences in populations. Journal of Computational Biology 14, 1273–1286 (2007)

    Article  MathSciNet  Google Scholar 

  92. Song, Y., Hein, J.: Parsimonious reconstruction of sequence evolution and haplotype blocks: Finding the minimum number of recombination events. In: Proc. 3rd Int’l Workshop Algorithms in Bioinformatics (WABI03), vol. 2812, pp. 287–302. Springer-Verlag (2003)

    Google Scholar 

  93. Song, Y., Hein, J.: On the minimum number of recombination events in the evolutionary history of DNA sequences. Journal of Mathematical Biology 48, 160–186 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  94. Song, Y., Hein, J.: Constructing minimal ancestral recombination graphs. Journal of Computational Biology 12, 147–169 (2005)

    Article  Google Scholar 

  95. Steel, M., Penny, D.: Parsimony, likelihood, and the roles of models in molecular phylogenetics. Mol. Biol. Evol. 17, 839–850 (2000)

    Google Scholar 

  96. Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using directed graphical models. Mol. Biol. Evol. 17, 875–881 (2000)

    Google Scholar 

  97. Tajima, F.: Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983)

    Google Scholar 

  98. Than, C., Jin, G., Nakhleh, L.: Integrating sequence and topology for efficient and accurate detection of horizontal gene transfer. In: Proceedings of the Sixth RECOMB Comparative Genomics Satellite Workshop, Lecture Notes in Bioinformatics, vol. 5267, pp. 113–127 (2008)

    Google Scholar 

  99. Than, C., Nakhleh, L.: SPR-based tree reconciliation: Non-binary trees and multiple solutions. In: Proceedings of the Sixth Asia Pacific Bioinformatics Conference (APBC), pp. 251–260 (2008)

    Google Scholar 

  100. Than, C., Ruths, D., Innan, H., Nakhleh, L.: Confounding factors in HGT detection: Statistical error, coalescent effects, and multiple solutions. Journal of Computational Biology 14(4), 517–535 (2007)

    Article  MathSciNet  Google Scholar 

  101. Than, C., Ruths, D., Nakhleh, L.: PhyloNet: A software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9, 322 (2008)

    Article  Google Scholar 

  102. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8(1), 69–78 (2001)

    Article  Google Scholar 

  103. Welch, R., Burland, V., Plunkett, G., Redford, P., Roesch, P., Rasko, D., Buckles, E., Liou, S., Boutin, A., Hackett, J., Stroud, D., Mayhew, G., Rose, D., Zhou, S., Schwartz, D., Perna, N., Mobley, H., Donnenberg, M., Blattner, F.: Extensive mosaic structure revealed by the complete genome sequence of uropathogenic escherichia coli. Proc. Nat’l Acad. Sci., USA 99(26), 17,020–17,024 (2002)

    Google Scholar 

  104. Willson, S.: Reconstruction of certain phylogenetic networks from the genomes at their leaves. Journal of Theoretical Biology 252, 338–349 (2008)

    Article  Google Scholar 

  105. Wu, Y.: A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25(2), 190–196 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luay Nakhleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer US

About this chapter

Cite this chapter

Nakhleh, L. (2010). Evolutionary Phylogenetic Networks: Models and Issues. In: Heath, L., Ramakrishnan, N. (eds) Problem Solving Handbook in Computational Biology and Bioinformatics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09760-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09760-2_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09759-6

  • Online ISBN: 978-0-387-09760-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics