Skip to main content

Integration of Topological Constraints in Medical Image Segmentation

  • Chapter
Handbook of Biomedical Imaging

Abstract

Topology is a strong global constraint that can be useful in generating geometrically accurate segmentations of anatomical structures. Conversely, topological “defects” or departures from the true topology of a structure due to segmentation errors can greatly reduce the utility of anatomical models. In this chapter we cover methods for integrating topological constraints into segmentation procedures in order to generate geometrically accurate and topologically correct models, which is critical for many clinical and research applications.

Support for this research was provided in part by the National Center for Research Resources (P41-RR14075, R01 RR16594-01A1 and the NCRR BIRN Morphometric Project BIRN002, U24 RR021382), the National Institute for Biomedical Imaging and Bioengineering (R01 EB001550, R01EB006758), the National Institute for Neurological Disorders and Stroke (R01 NS052585-01) as well as the Mental Illness and Neuroscience Discovery (MIND) Institute, and is part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The human cerebral cortex is a highly folded ribbon of gray matter (GM) that lies inside the cerebrospinal fluid (CSF) and outside the white matter (WM) of the brain. Locally, its intrinsic “unfolded” structure is that of a 2D sheet, several millimeters thick. In the absence of pathology and assuming that the midline hemispheric connections are artificially closed, each cortical hemisphere can be considered as a simply-connected 2D sheet of neurons that carries the simple topology of a sphere - see Fig. 1-b

  2. 2.

    In the case of multiple surfaces involving K connected components, the total genus is related to the total Euler-characteristic by the formula: \( \chi \) = 2(K − g).

References

  1. Y. Bai, X. Han, and J. Prince. Octree-based topology-preserving iso-surface simplification. In MMBIA, 2006.

    Google Scholar 

  2. Y. Bai, X. Han, and J. Prince. Octree grid topology preserving geometric deformable models for 3d medical image segmentation. In International Conference on Information Processing in Medical Imaging, 2007.

    Google Scholar 

  3. P. Bazin and P. D.L. Topology preserving tissue classification with fast marching and topology templates. International Conference on Information Processing in Medical Imaging, pages 234–245, 2005.

    Google Scholar 

  4. P. Bazin, L. Ellingsen, and D. Pham. Digital homeomorphisms in deformable registration. In International Conference on Information Processing in Medical Imaging, 2007.

    Google Scholar 

  5. P. Bazin and D. Pham. Statistical and topological atlas based brain image segmentation. In Medical Image Computing and Computer-Assisted Intervention, 2007.

    Google Scholar 

  6. G. Bertrand. A boolean characterization of three-dimensional simple points. Pattern Recognition Letters, 17:115–124, 1996.

    Article  Google Scholar 

  7. G. Bertrand and G. Malandain. A new characterization of three-dimensional simple points. Patternb Recognition Letters, 2(15):169–175, 1994.

    Article  Google Scholar 

  8. S. Bischoff and L. Kobbelt. Isosurface reconstruction with topology control. Pacific Graphics Proceedings, pages 246–255, 2002.

    Google Scholar 

  9. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. The International Journal of Computer, 22(1):61–79, 1997.

    Article  MATH  Google Scholar 

  10. G. Christense, R. Rabbitt, and M. Miller. 3d brain mapping using a deformable neuroanatomy. Phys. Med. Biol., 39:609–618, 1994.

    Article  Google Scholar 

  11. A. Dale, B. Fischl, and S. M.I. Cortical surface-based analysis i: Segmentation and surface reconstruction. NeuroImage, 9:179–194, 1999.

    Google Scholar 

  12. A. M. Dale and M. I. Sereno. Improved localization of cortical activity by combining eeg and meg with mri cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience, 5(2):162–176, 1993.

    Article  Google Scholar 

  13. C. Davatzikos and R. Bryan. Using a deformable surface model to obtain a shape representation of the cortex. IEEE TMI, 15:758–795, 1996.

    Google Scholar 

  14. H. Delingette. General object reconstruction based on simplex meshes. The International Journal of Computer Vision, 32(2):111–146, 1999.

    Article  Google Scholar 

  15. H. Delingette and J. Montagnat. Shape and topology constraints on parametric active contours. Computer Vision and Image Understanding, 83(2):140–171, 2001.

    Article  MATH  Google Scholar 

  16. R. Desikan, F. Ségonne, and etal. A computer generated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. Human Brain Mapping, 2005.

    Google Scholar 

  17. H. Drury, D. Van Essen, C. Anderson, C. Lee, T. Coogan, and J. Lewis. Computerized mappings of the cerebral cortex: A multiresolution flattening method and a surface-based coordinate system. J. Cogn. Neurosci, 8(1):1–28, 1996.

    Article  Google Scholar 

  18. B. Fischl and A. Dale. Measuring the thickness of the human cerebral cortex from magnetic resonnace images. Proceedings of the National Academy of Sciences, 97:11044–11049, 2000.

    Article  Google Scholar 

  19. B. Fischl, A. Liu, and A. Dale. Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE TMI, 20: 70–80, 2001.

    Google Scholar 

  20. B. Fischl, D. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. Van der Kouwe, R. Killinay, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. Dale. Whole brain segmentation: Automated labeling of neuroanatomical strucutres in the human brain. Neuron, 33:341–355, 2002.

    Article  Google Scholar 

  21. B. Fischl, M. Sereno, and A. Dale. Cortical surface-based analysis ii: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9:195–207, 1999.

    Article  Google Scholar 

  22. B. Fischl, M. Sereno, R. Tootell, and A. Dale. High-resolution inter-subject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8:272–284, 1999.

    Article  Google Scholar 

  23. R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky. Cortex segmentation: A fast variational geometric approach. IEEE TMI, 21(2):1544–1551, 2002.

    Google Scholar 

  24. I. Guskov and Z. Wood. Topological noise removal. Graphics I proceedings, pages 19–26, 2001.

    Google Scholar 

  25. X. Han. Anatomically Consistent Segmentation of Medical Imagery Using a Level Set Method and Digital Topology. PhD thesis, Baltimore, Maryland, October 2003.

    Google Scholar 

  26. X. Han, C. Xu, U. Braga-Neto, and J. Prince. Topology correction in brain cortex segmentation using a multiscale, graph-based approach. IEEE TMI, 21(2):109–121, 2001.

    Google Scholar 

  27. X. Han, C. Xu, and J. Prince. A 2d moving grid geometric deformable model. IEEE Conf. on Comp. Vis. Patt. Recog., pages 153–160, 2003.

    Google Scholar 

  28. X. Han, C. Xu, and J. Prince. A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6):755–768, 2003.

    Article  Google Scholar 

  29. S. Jaume. Topology Simplification Algorithm for the Segmentation of Medical Images. PhD thesis, University of Louvain (Belgium), Feb 2004.

    Google Scholar 

  30. B. Kara¸c and C. Davatzikos. Topology preservation and regularity in estimated deformation fields. International Conference on Information Processing in Medical Imaging, pages 426–437, 2003.

    Google Scholar 

  31. R. Kikinis and etal. Temporal love sulco-gyral pattern anomalies in schizophrenia: An in vivo mr three-dimensional surface rendering study. Neuroscience Letters, 182:7–12, 1994.

    Google Scholar 

  32. N. Kriegeskorte and R. Goeble. An efficient algorithm for topologically segmentation of the cortical sheet in anatomical mr volumes. NeuroImage, 14:329–346, 2001.

    Article  Google Scholar 

  33. J.-O. Lachaud and A. Montanvert. Deformable meshes with automated topology changes for coarse-to-fine 3D surface extraction. Medical Image Analysis, 3(2):187–207, 1999.

    Article  Google Scholar 

  34. W. Lorensen and H. Cline. Marching cubes: A high-resolution 3D surface reconstruction algorithm. ACM Computer Graphics, 21(4):163–170, 1987.

    Article  Google Scholar 

  35. D. MacDonald, N. Kabani, D. Avis, and A. Evens. Automated 3d extraction of inner and outer surfaces of cerebral cortex from mri. NeuroImage, 12:340–356, 2000.

    Article  Google Scholar 

  36. J.-F. Mangin, V. Frouin, I. Bloch, J. Regis, and J. Lopez-Krahe. From 3d magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision, 5:297–318, 1995.

    Article  Google Scholar 

  37. T. McInerney and D. Terzopolos. Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2):91–108, 1996.

    Article  Google Scholar 

  38. T. McInerney and D. Terzopolos. Deformable models in medical image analysis: A survey, 1999 update. Handbook of Medical Image Processing, 1999.

    Google Scholar 

  39. T. McInerney and D. Terzopoulos. T-snakes: Topology adaptive snakes. Medical Image Analysis, 4:73–91, 2000.

    Article  Google Scholar 

  40. S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  41. J.-P. Pons and J.-D. Boissonnat. Delaunay deformable models: Topology-adaptive meshes based on the restricted delaunay triangulation. In Conference on Computer Vision and Pattern Recognition, 2007.

    Google Scholar 

  42. F. Poupon, J.-F. Mangin, D. Hasboun, C. Poupon, I. Magnin, and V. Frouin. Multi-object deformable templates dedicated to the segmentation of brain deep structures. LNCS, 1496:1134–1143, 1998.

    Google Scholar 

  43. D. Salat, R. Buckner, A. Snyder, D. Greve, R. Desikan, E. Busa, J. Morris, A. Dale, and B. Fischl. Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7):721–730, July 2004.

    Article  Google Scholar 

  44. F. Ségonne. Active contours under topology control genus preserving level sets. The International Journal of Computer, 2007.

    Google Scholar 

  45. F. Ségonne. Segmentation of Medical Images under Topological Constraints. PhD thesis, Massachusetts Institute of Technology, December 2005.

    Google Scholar 

  46. F. Ségonne, E. Grimson, and B. Fischl. Topological correction of subcortical segmentation. In Proceedings of Medical Image Computing and Computer-Assited Intervention, volume 2879-2, pages 695–702, 2003.

    Google Scholar 

  47. F. Ségonne, E. Grimson, and B. Fischl. A genetic algorithm for the topology correction of cortical surfaces. In Proceedings of Information Processing in Medical Imaging, LNCS, volume 3565, pages 393–405, 2005.

    Google Scholar 

  48. F. Ségonne, J. Pacheco, and B. Fischl. A geometrically accurate topology-correction of cortical surfaces using nonseparating loops. TMI, 26(4):518–529, 2007.

    Google Scholar 

  49. D. Shattuck and R. Leahy. Automated graph based analysis and correction of cortical volume topology. IEEE TMI, 20(11):1167–1177, 2001.

    Google Scholar 

  50. J. Tanabe, D. Amend, N. Schuff, V. DiSclafani, F. Ezekiel, D. Norman, G. Fein, and M. Wiener. Tissue segmentation of the brain in alzeihmer’s disease. J. Neuroradiol., 18:115–123, 1997.

    Google Scholar 

  51. X. Tao, X. Han, M. Rettmann, J. Prince, and C. Davatzikos. Statistical study on cortical sulci of human brains. Proceedings of Inf. Proc. in Med. Imag., pages 37–49, 2001.

    Google Scholar 

  52. D. Terzopoulos, A. Witkin, and M. Kass. Constraints on Deformable Models: Recovering 3D shape and Nonrigid Motion. Artificial Intelligence, 36(1):91–123, 1988.

    Article  MATH  Google Scholar 

  53. P. Thompson, D. MacDonald, M. Mega, C. Holmes, A. Evans, and A. Toga. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. J. Comput. Assist. Tomogr., 21(4):567–581, 1998.

    Article  Google Scholar 

  54. P. Thompson, J. Moussai, S. Zohoori, A. Goldkorn, A. Khan, M. Mega, G. Small, J. Cummings, and A. Toga. Cortical variability and asymmetry in normal aging and alzheimer’s disease. Cerebral Cortex, 8(6):492–509, 1998.

    Article  Google Scholar 

  55. M. Vaillant and C. Davatzikos. Hierarchical matching of cortical features for deformable brain image registration. Proceedings of Inf. Proc. in Med. Imag., pages 182–195, 1999.

    Google Scholar 

  56. D. Van Essen and H. Drury. Structural and functional analyses of human cerebral cortex using a surface-based atlas. Journal of Neuroscience, 17(18):7079–7102, 1997.

    Google Scholar 

  57. C. Xu, D. Pham, and J. Prince. Medical image segmentation using deformable models. Handbook of Medical Imaging - Medical Image Processing and Analysis, 2:129–174, 2000.

    Article  Google Scholar 

  58. C. Xu, D. Pham, M. Rettmann, D. Yu, and J. Prince. Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE TMI, 18:467–480, 1999.

    Google Scholar 

  59. X. Zeng, L. Staib, R. Schultz, and J. Duncan. Segmentation and measurement of the cortex from 3d mr images using coupled surfaces propagation. IEEE TMI, 18:100–111, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ségonne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ségonne, F., Fischl, B. (2015). Integration of Topological Constraints in Medical Image Segmentation. In: Paragios, N., Duncan, J., Ayache, N. (eds) Handbook of Biomedical Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09749-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09749-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09748-0

  • Online ISBN: 978-0-387-09749-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics