Skip to main content

pH-Responsive Hydrogels: Swelling Model

  • Conference paper
Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 553))

Abstract

Polymers that alter their characteristics in response to changes in their environment have been of great recent interest. Several research groups have been developing drug delivery systems based on these responsive polymers that intend mimic the normal physiological process. In these devices drug delivery is regulated by means of an interaction with the surrounding environment (feedback information) without any external intervention. The most commonly studied polymers having environmental sensitivity are either pH or temperature sensitive; there are also inflammation-sensitive systems. In this chapter we will concentrate on pH-sensitive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, G., and Hoffman, A. S., 1995, Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH, Nature 373(6509):49–52.

    Article  Google Scholar 

  2. Goldraich, M., and Kost, J., 1993, Glucose-sensitive polymeric matrices for controlled drug delivery, Clin. Mater. 13(1–4):135–42.

    Article  Google Scholar 

  3. Holtz, J. H., and Asher, S. A., 1997, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 389(6653):829–32.

    Article  Google Scholar 

  4. Kiser, P. F., Wilson, G., and Needham, D., 1998, A synthetic mimic of the secretory granule for drug delivery, Nature 394(6692):459–62.

    Article  Google Scholar 

  5. Kost, J., and Langer, R., 2001, Responsive polymeric delivery systems, Adv. Drug. Deliv. Rev. 46(1–3):125–48.

    Article  Google Scholar 

  6. Miyata, T., Asami, N., and Uragami, T., 1999, A reversibly antigen-responsive hydrogel, Nature 399:766–769.

    Article  Google Scholar 

  7. Osada, Y., Okuzaki, H., and Hori, H., 1992, A polymer gel with electrically driven motility, Nature 355:242–244.

    Article  Google Scholar 

  8. Podual, K., Doyleiii, F. J., and Peppas, N. A., 2000, Glucose-sensitivity of glucose oxidasecontaining cationic copolymer hydrogels having poly(ethylene glycol) grafts, J. Controlled Release 67(1):9–17.

    Article  Google Scholar 

  9. Stayton, P. S., Shimoboji, T., Long, C., Chilkoti, A., Chen, G. H., Harris, J. M., and Hoffman, A. S., 1995, Control of protein-ligand recognition using a stimuli-responsive polymer, Nature 378:472–474.

    Article  Google Scholar 

  10. Taillefer, J., Jone, M. C., Brasseur, N., Van Leir, J. E., and Leroux, J. C., 2000, Preparation and characterization of pH-responsive polymeric micelles for the delivery of photo-sensitizing anti-cancer drugs, J. Pharm. Sci. 89:52–62.

    Article  Google Scholar 

  11. Tanihara, M., Suzuki, Y., Nishimura, Y., Suzuki, K., Kakimaru, Y., and Fukunishi, Y., 1999, A novel microbial infection-responsive drug release system., J Pharm. Sci. 88:510–514.

    Article  Google Scholar 

  12. Traitel, T., Cohen, Y., and Kost, J., 2000, Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions, Biomaterials 21(16):1679–1687.

    Article  Google Scholar 

  13. Yoshida, R., Uchida, K., Kaneko, Y., Sakai, K., Kikuchi, A., Sakurai, Y., and Okano, T., 1995, Comb-type grafted hydrogels with rapid de-swelling response to temperature changes, Nature 374:240–242.

    Article  Google Scholar 

  14. Traitel, T., Kost, J., and Lapidot, S. A., 2003, Modeling ionic hydrogels swelling: characterization of the non-steady state, Biotechnol. Bioeng. 84(1):20–8.

    Article  Google Scholar 

  15. Goldbart, R., Traitel, T., Lapidot, S. A., and Kost, J., 2002, Enzimatically controlled responsive drug delivery systems, Polym. Adv. Technol. 13:1006–1018.

    Article  Google Scholar 

  16. Flory, P. J., 1953, Principles of polymer chemistry, Cornell University Press, New York.

    Google Scholar 

  17. Peppas, N. A., 1987, Hydrogels in medicine and pharmacy, CRC Press, Boca Raton, FL.

    Google Scholar 

  18. Rattner, B. D., Hoffman, A. S., Schoen, F. J., and Lemons, J. E., 1996, Biomaterials science: An introduction to materials in medicine, Academic Press, New York.

    Google Scholar 

  19. Bell, C. L., and Peppas, N. A., 1996, Water, solute and protein diffusion in physiologically responsive hydrogels of poly(methacrylic acid-g-ethylene glycol), Biomaterials 17(12):1203–1218.

    Article  Google Scholar 

  20. Park, K., Shalaby, W. S. W., and Park, H., 1993, Biodegradable hydrogels for drug delivery, Thechnomic Publishing Company, Inc., PA.

    Google Scholar 

  21. Brannon-Peppas, L., and Peppas, N. A., 1989, Solute and penetrant diffusion in swellable polymers. IX. The mechanism of drug release from pH sensitive swelling-controlled systems., J. Controlled Release 8:267–274.

    Article  Google Scholar 

  22. Annaka, M., and Tanaka, T., 1992, Multiple phases of polymer gels, Nature 355:430–432.

    Article  Google Scholar 

  23. Firestone, B. A., and Siegel, R. A., 1988, Dynamic pH-dependent swelling properties of hydrophobic polyelectrolyte gel, Polym. Commun. 29:204–208.

    Google Scholar 

  24. Dong, L.-C., and Hoffman, A. S., 1990, Controlled enteric release of macromolecules from pH sensitive, macroporous hetrogels, Proceedings of the International Symposium on Controlled Bioactive Materials (Proc. Int. Symp. Control. Bioact. Mater.) 17:325–326.

    Google Scholar 

  25. Kou, J. H., Fleisher, D., and Amidon, G., 1990, Modeling drug release from dynamically swelling poly(hydroxyethyl methacrylate-co-methacrylic acid) hydrogels, J. Controlled Release 12:241–250.

    Article  Google Scholar 

  26. Pradny, M., and Kopecek, J., 1990, Hydrogels for site-specific oral delivery. Poly(acrylic acid)-co-(butyl acrylate) crosslinked with 4,4’-bis(methacryloamino)azobenzene, Makromol. Chem. 191:1887–1897.

    Article  Google Scholar 

  27. Siegel, R. A., Falamarzian, M., Firestone, B. A., and Moxley, B. C., 1988, pH-Controlled release from hydrophobic/polyelectrolyte copolymer hydrogels, J. Controlled Release 8(2): 179–182.

    Article  Google Scholar 

  28. Kono, K., Tabata, F., and Takagishi, T., 1993, pH-responsive permeability of poly(acrylic acid)-- poly(ethylenimine) complex capsule membrane, J Membrane Sci. 76(2–3):233–243.

    Article  Google Scholar 

  29. Hariharan, D., and Peppas, N. A., 1993, Modelling of water transport and solute release in physiologically sensitive gels, J. Controlled Release 23(2):123–135.

    Article  Google Scholar 

  30. Siegel, R. A., and Firestone, B. A., 1988, pH-dependent equilibrium swelling properties of hydrophobicpoly-electrolyte copolymer gels, Macromolecules 21(11):3254–3259.

    Article  Google Scholar 

  31. Allcock, H. R., and Ambrosio, A. M. A., 1996, Synthesis and characterization of pH-sensitive poly(organophosphazene) hydrogels, Biomaterials 17(23):2295–2302.

    Article  Google Scholar 

  32. Jarvinen, K., Akerman, S., Svarfvar, B., Tarvainen, T., Viinikka, P., and Paronen, P., 1998, Drug release from pH and ionic strength responsive poly(acrylic acid) graffed poly(vinylidenefluoride) membrane bags in vitro, Pharm. Res. 15(5):802–5.

    Article  Google Scholar 

  33. De, S. K., and Alunu, N. R., In press, A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels, Mechanics of Materials.

    Google Scholar 

  34. Siegel, R. A., Johannes, I., Hunt, C. A., and Firestone, B. A., 1992, Buffer effects on swelling kinetics in polybasic gels, Pharm. Res. 9(1):76–81.

    Article  Google Scholar 

  35. Kim, B., and Peppas, N. A., 2003, Analysis of molecular interactions in poly(methacrylic acid-g-ethylene glycol) hydrogels, Polymer 44:3701–3707.

    Article  Google Scholar 

  36. Wang, C., Stewart, R. J., and Kopecek, J., 1999, Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains, Nature 397:417–420.

    Article  Google Scholar 

  37. Phair, R. D., 1997, Development of kinetic models in the nonlinear world of molecular cell biology, Metabolism 46:1489–1495.

    Article  Google Scholar 

  38. Weng, G., Bhalla, U. S., and Iyengar, R., 1999, Complexity in biological systems, Science 284:92–96.

    Article  Google Scholar 

  39. Barenbrug, T. M. A. O. M., Smit, J. A. M., and Bedeaux, D., 1995, Highly Swollen Gels of Semi-flexible Polyelectrolyte Chains Near the Rod Limit, Polymer Gels and Networks 3(3):331–373.

    Article  Google Scholar 

  40. Brannon-Peppas, L., and Peppas, N. A., 1991, Equilibrium swelling behavior of dilute ionic hydrogels in electrolytic solutions, J. Controlled Release 16(3):319–329.

    Article  Google Scholar 

  41. English, A. E., Tanaka, T., and Edelman, E. R., 1997, Equilibrium and non-equilibrium phase transitions in copolymer polyelectrolyte hydrogels, J Chem. Phys. 107:1645–1654.

    Article  Google Scholar 

  42. Kou, J. H., Amidon, G. L., and Lee, P. I., 1988, pH-dependent swelling and solute diffusion characteristics of poly(hydroxyethyl methacrylate-co-methacrylic acid) hydrogels, Pharm. Res. 5(9):592–7.

    Article  Google Scholar 

  43. Ricka, J., and Tanaka, T., 1984, Swelling of ionic gels: quantitative performance of the Donnan theory, Macromolecules 17:2916–2921.

    Article  Google Scholar 

  44. Siegel, R. A., Firestone, B. A., Cornejo-Bravo, J., and Schwarz, B., 1991, Hydrophobic weak polybasic gels: Factors controlling swelling equilibria, in: Polymer gels — Fundamentals and biomedical applications (D. De Rossi, Kajiwara K., Osada Y., and Yamauchi A., eds.), Plenum Press, New York, pp. 309–317.

    Chapter  Google Scholar 

  45. Siegel, R. A., 1993, Hydrophobic weak polyelectrolyte gels: Studies of swelling equilibria and kinetics, in: Advances in polymer science/ responsive gels (K. Dusek, ed.), Springer Verlag Press, New York, pp. 233–267.

    Google Scholar 

  46. Vasheghani-Farahani, E., Vera, J. H., Cooper, D. G., and Weber, M. E., 1990, Swelling of ionic gels in electrolyte solutions, Ind. Eng. Chem. Res. 29:554–560.

    Article  Google Scholar 

  47. Yuk, S. H., and Bae, Y. H., 1999, Phase-transition polymers for drug delivery, Crit. Rev. Therap. Drug Carr. Syst. 16:385–423.

    Article  Google Scholar 

  48. Cobelli, C., and Foster, D. M., 1998, Compartmental models: theory and practice using the SAAM II software system, Advances in Experimental Medicine and Biology 445:79–101.

    Google Scholar 

  49. Heatherington, A. C., Vicini, P., and Golde, H., 1998, A pharmacokinetic/pharmacodynamic comparison of SAAM II and PC/WinNonlin modeling software, J. Pharm. Sci. 87(10):1255–63.

    Article  Google Scholar 

  50. Kohn, M. C., 1995, Achieving credibility in risk assessment models, Toxicol. Lett. 79 (1–3):107–14.

    Article  Google Scholar 

  51. Wolfe, R. R., 1992, Radioactive and stable isotope tracers in biomedicine: Principles and practice of kinetic analysis, Wiley-Liss, Inc., New York.

    Google Scholar 

  52. Yang, R. S. H., and Anderson, M. E., 1994, Pharmacokinetics, in: Introduction to biochemical toxicology (E. Hodgson, and Levi P., eds.), Elsevier, New York, pp. 49–73.

    Google Scholar 

  53. Cornejo-Bravo, J. M., Arias-Sanchez, V., Alvarez-Anguiano, A., and Siegel, R. A., 1995, Kinetics of drug release from hydrophobic polybasic gels: effect of buffer acidity* 1, J. Controlled Release 33(2):223–229.

    Article  Google Scholar 

  54. Klumb, L. A., and Horbett, T. A., 1992, Design of insulin delivery devices based on glucose sensitive membranes, J. Controlled Release 18(1):59–80.

    Article  Google Scholar 

  55. Klumb, L. A., and Horbett, T. A., 1993, The effect of hydronium ion transport on the transient behavior of glucose sensitive membranes, J. Controlled Release 27(2):95–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Traitel, T., Kost, J. (2004). pH-Responsive Hydrogels: Swelling Model. In: Hasirci, N., Hasirci, V. (eds) Biomaterials. Advances in Experimental Medicine and Biology, vol 553. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48584-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48584-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0988-9

  • Online ISBN: 978-0-306-48584-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics