Skip to main content

Molecular Biology and Genomics of the Desiccation Tolerant Moss Tortula Ruralis

  • Chapter
New Frontiers in Bryology

Abstract

The molecular, cellular and biochemical responses of plants to water-deficit stress are the central, and long-term, interest of our respective research programs. We utilize the desiccation-tolerant moss Tortula ruralis (Hedw.) Gaerten., Meyer Scherb. as an experimental model for studying post-transcriptional gene control, molecular & biochemical responses to abiotic stress, cellular repair mechanisms in plants and as a source of novel tolerance-associated genes. In this chapter we will introduce the molecular and biochemical mechanisms of desiccation-tolerance in mosses, describe the molecular and genomics tools that have been developed for T. ruralis (such as EST databases, cDNA libraries, and microarrays), and discuss the expression analysis of several cDNA clones (i.e. the rehydrins Tr288 & Tr213, the aldehyde dehydrogenases Aldh7B6 & Aldh21A1, and the early light-inducible proteins Elipa & Elipb) that are associated with desiccation-stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., Kerlavage, A.R., McCombie, Venter, J. C. (1991) Complementary DNA sequencing: Expressed Sequence Tags and Human Genome Project. Science. 252, 1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Adamska, I., Kruse, E., Kloppstech, K. (2001) Stable insertion of the early light-induced proteins into etioplast membranes requires chlorophyll a. J. Biol. Chem. 276, 8582–7

    Article  PubMed  CAS  Google Scholar 

  • Adamska, I., Roobol-Boza, M., Lindahl, M., Andersson, B. (1999) Isolation of pigment-binding early light-inducible proteins from pea. Eur. J. Biochem. 260, 453–60.

    Article  PubMed  CAS  Google Scholar 

  • Alamillo, J.M., Bartels, D. (2001) Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum. Plant Sci. 160, 1161–70

    Article  CAS  Google Scholar 

  • Alpert P. Oliver M.J. (2002) Drying without dying. In M. Black H. W. Pritchard (Eds.) Desiccation and Survival in Plants: Drying Without Dying (pp. 3–43 ) CABI Publishing, New York NY

    Chapter  Google Scholar 

  • Barclay, K.D. Mckersie. B. D. (1994) Peroxidation reactions in plant membranes-effects of free fatty acids. Lipids 29: 877–882

    Article  PubMed  Google Scholar 

  • Bewley, J. D. (1979) Physiological aspects of desiccation-tolerance. Annu. Rev. Plant Physiol., 30, 195–238

    Article  CAS  Google Scholar 

  • Bewley, J. D., P. Halmer, J. E. Krochko, Winner, W. E. (1978) Metabolism of a drought-tolerant and drought-sensitive moss: respiration ATP synthesis and carbohydrate status, In J.H. Crowe and J.S. Clegg (Eds), Dry Biological Systems: (pp. 185–203 ). Academic Press, NY

    Google Scholar 

  • Bewley, J.D. Oliver, M. J. (1992) Desiccation-tolerance in vegetative plant tissues and seeds: Protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms. In: Osmond, C.B. and Somero, G. (eds.) Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cellular and Molecular Levels. Springer-Verlag, Berlin, pp. 141–160.

    Google Scholar 

  • Bewley, J.D., Reynolds, T.L., Oliver, M. J. (1993) Evolving Strategies in the adaptation to desiccation. In: Close, T.J. and Bray, E.A. (eds.) Plant Responses to Cellular Dehydration During Environmental Stress. Current Topics in Plant Physiology: American Society of Plant Physiologists Series Vol. 10, pp. 193–201

    Google Scholar 

  • Binet M.N., Weil J.H., Tessier, L. H. (1991) Structure and expression of sunflower ubiquitin genes. Plant Mol. Biol., 17, 395–407

    Article  PubMed  CAS  Google Scholar 

  • Bond U., Agell N., Haas A., Redman K., Schlesinger, M. (1988) Ubiquitin in stressed chicken embryo fibroblasts. J Biol Chem 263, 2384–2388

    PubMed  CAS  Google Scholar 

  • Callis J., Raasch J., Vierstra, R. (1990) Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J. Biol. Chem. 265, 12486–12493

    PubMed  CAS  Google Scholar 

  • Chen X., Kanokporn T., Zeng Q., Wilkins T.A., Wood A.J. (2002a) Characterization of the V-type H(+)- ATPase in the resurrection plant Tortula ruralis: accumulation and polysomal recruitment of the proteolipid c subunit in response to salt-stress. J. Expt. Bot., 53, 225–232

    Article  CAS  Google Scholar 

  • Chen X., Zeng Q., Wood A.J. (2002b) ALDH7B6 encodes a turgor-responsive aldehyde dehydrogenase homologue that is constitutively expressed in Tortula ruralis gametophytes. The Bryologist, 105, 177–184

    CAS  Google Scholar 

  • Chen X., Zeng Q., Wood A.J. (2002c) The stress-responsive gene ALDH21A1 describes a novel eukaryotic aldehyde dehydrogenase protein family. J. Plant Physiol., 159, 677–684

    Article  CAS  Google Scholar 

  • Chen X., Wood A.J. (2004) The 26S Proteasome of the Resurrection Plant Tortula ruralis: Cloning and Characterization of the TrRPT2 subunit. Biologia Plant., 3, 363–368

    Google Scholar 

  • Christensen A., Sharrock R., Quail, P. (1992) Maize polyubiquitin genes: Structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant. Mol. Biol. 18, 675–689

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko L., Lau Y-F.C., Cambell A.P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gursskaya N., Sverdlov E.D., Siebert, P.D. (1996) Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Science USA, 93, 6025–6030

    Article  CAS  Google Scholar 

  • Duff R.J., Oliver M.J., Wood A.J. (1999a) Nucleotide sequence of a truncated H3 histone cDNA (accession no. AF093108) from the desiccation-tolerant bryophyte Tortula ruralis (PGR99–014). Plant Physiol., 119, 805

    Article  Google Scholar 

  • Duff R.J., Oliver M.J., Wood A.J. (1999b) A Tortula ruralis cDNA encoding small-subunit ribosomal protein S3a: polysomal retention of transcript in response to desiccation and rehydration. The Bryologist, 102, 418–425

    Article  CAS  Google Scholar 

  • Dure, L. III. Crouch, M. Harada, J. Ho, T-HD. Mundy, J. (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12, 475–486

    Article  CAS  Google Scholar 

  • Esterbauer, H., Schaur, R.J., Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxyenal, malonaldehyde and related aldehydes. Free Rad. Biol. Med. 11, 81–128

    Article  PubMed  CAS  Google Scholar 

  • Fisher E., Zhou M., Mitchell D., Wu X., Omura S., Wang H., Goldberg A. Ginsberg, H. (1997)The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J. Biol. Chem. 272, 20427–20434

    Google Scholar 

  • Fornace A., Alamo I., Hollander C. Lamoreaux, E. (1989) Ubiquitin mRNA is a major stress-induced transcript in mammalian cells. Nucleic Acids Research 17, 1215–1230

    Article  PubMed  CAS  Google Scholar 

  • Foster, R. Chua, N-H. (1999) An Arabidopsis mutant with deregulated ABA gene expression: implications for negative regulator function. Plant J. 17, 363–372

    Article  PubMed  CAS  Google Scholar 

  • Genschik P., Parmentier Y., Durr A., Marbach J., Criqui M.C., Jamet E. Fleck, J. (1992) Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Mol. Biol. 20, 897–910

    Article  PubMed  CAS  Google Scholar 

  • Gilmore, A.M. (1997) Mechanistic aspects of xanthophyllcycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant. 99, 197–209

    Article  CAS  Google Scholar 

  • Grimm, B., Kruse, E., Kloppstech, K. (1989) Transiently expressed early light-inducible proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Molec. Biol. 13, 583–93

    Article  CAS  Google Scholar 

  • Guerrero, F.D., Jones, J.T., Mullet, J. E. (1990) Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol. Biol. 15, 11–16

    Google Scholar 

  • Handke C., Boyle C., Wettern, M. (1993) Effect of aging, abiotic and biotic stress upon ubiquitination in young barley plants. Agnew Bot 67 120–123

    CAS  Google Scholar 

  • Hasselgren P.O., Fischer, J. (1997) The ubiquitin-proteasome pathway: Review of a novel intracellular mechanism of muscle protein breakdown during sepsis and other catabolic conditions. Annals of Surgery 225, 307–316

    Article  PubMed  CAS  Google Scholar 

  • Heddad, M., Adamska, I. (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc. Natl. Acad. Sci. U.S.A 97, 3741–6

    Article  PubMed  CAS  Google Scholar 

  • Heddad, M., Adamska, I. (2002) The evolution of light stress proteins in photosynthetic organisms. Comp. Funct. Genom. 3, 504–510

    Article  CAS  Google Scholar 

  • Ingram, J., Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403

    Article  CAS  Google Scholar 

  • Koag, M.C., Fenton R.D., Wilkens S., Close, T. J. (2003) the binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131, 309–316

    Google Scholar 

  • Lindahl, R. (1992) Aldehyde dehydrogenases and their role in carcinogenesis Crit Rev Biochem. Mol. Biol. 27, 283–33

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, M., Funk, C., Webster, J., Bingsmark, S., Adamska, I., Andersson, B. (1997) Expression of ELIPs and PS II-s protein in spinach during acclimative reduction of the photosystem II antenna in response to increased light intensities. Photo. Res. 54, 227–36

    Article  CAS  Google Scholar 

  • Machuka J., Bashiardes S., Ruben E., Spooner K., Cuming A., Knight C. D. Cove D. J. (1999) Sequence analysis of expressed sequence tags from an ABA-treated cDNA library identifies stress response genes in the moss Physcomitrella patens. Plant Cell Physiol., 40, 378–387

    CAS  Google Scholar 

  • Meyer, G., Kloppstech, K. (1984) A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur. J. Biochem. 138, 201–7

    Article  PubMed  CAS  Google Scholar 

  • Montane, M.H., Kloppstech, K. (2000) The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function? Gene 258, 1–8

    Article  PubMed  CAS  Google Scholar 

  • Oliver M.J., Tuba Z., Mishler B.D. (2000a) Evolution of desiccation tolerance in land plants. Plant Ecol. 151, 85–100

    Article  Google Scholar 

  • Oliver M.J., Velten J., Wood A.J. (2000b) Bryophytes as experimental models for the study of environmental stress tolerance: desiccation-tolerance in mosses. Plant Ecol., 151, 73–84

    Article  Google Scholar 

  • Oliver M.J. (1991) Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: Ramifications for a repair-based mechanism of desiccation-tolerance. Plant Physiol., 97, 1501–1511

    Article  PubMed  CAS  Google Scholar 

  • Oliver, M. J. Bewley, J. D. (1984a) Desiccation and ultrastructure in bryophytes. Adv. Bryol. 2, 91–131

    Google Scholar 

  • Oliver, M. J. Bewley, J. D. (1984b) Plant desiccation and protein synthesis: IV. RNA synthesis, stability, and recruitment of RNA into protein synthesis upon rehydration of the desiccation-tolerant moss Tortula ruralis. Plant Physiol. 74, 21–25

    Article  PubMed  CAS  Google Scholar 

  • Oliver M.J., Bewley J.D. (1997) Desiccation-tolerance of plant tissues: a mechanistic overview. Hort. Rev., 18, 171–213

    Google Scholar 

  • Oliver, M.J., Wood, A.J. (1997) Desiccation-tolerance of mosses. In T. Koval (Ed), Stress-inducible Processes in Higher Eukaryotic Cells (pp. 1–26 ). Plenum Press, NY.

    Google Scholar 

  • Oliver M.J., Wood A.J., O’Mahony P. (1997) How some plants recover from vegetative desiccation: a repair based strategy. Acta Physiol. Plant., 19, 419–425

    Article  CAS  Google Scholar 

  • Oliver M.J., Wood A.J., O’Mahony P. (1998) “To dryness and beyond”-preparation for the dried state and rehydration in vegetative desiccation-tolerant plants, Plant Growth Regul., 24, 193–201

    Google Scholar 

  • O’Mahony P.J., Oliver M.J. (1999) The involvement of ubiquitin in vegetative desiccation tolerance. Plant Mol. Biol., 41, 657–667

    Article  PubMed  Google Scholar 

  • Phillips J. R., Oliver M. J. Bartels D. (2002) Moleulcar genetics of desiccation tolerant systems. In M. Black H. W. Pritchard (Eds.) Desiccation and Survival in Plants: Drying Without Dying (pp. 319–341 ) CABI Publishing, New York NY

    Chapter  Google Scholar 

  • Platt, K.A., Oliver, M.J., Thomson, W. W. (1994) Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity: freeze fracture evidence. Protoplasma 178, 57–65

    Article  Google Scholar 

  • Porembski, S., Barthlott, W. (2000) Genetic and gneisic outcrops (inselbergs) as centers for diversity of desiccation-tolerant vascular plants. Plant Ecology, 151, 19–28

    Article  Google Scholar 

  • Proctor, M.C.F., Smirnoff, N. (2000) Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. J. Expt. Bot 51, 1695–1704

    Article  CAS  Google Scholar 

  • Proctor, M.C.F. Tuba, Z. (2002) Poikilohydry and homohydry: anthesis or spectrum of possibilities. New Phytol. 156, 327–349

    Article  Google Scholar 

  • Reski R. S., Reynolds M., Wehe T., Kleberjanke Kruse S. (1998) Moss (Physcomitrella patens) expressed sequence tags include several sequences which are novel for plants. Bot. Acta, 111, 143–14

    CAS  Google Scholar 

  • Rhodes, D., Hanson, A. D. (1993). Quaternary ammonium and tertiary sulphonium compounds in high plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 357–384

    Article  CAS  Google Scholar 

  • Schonbeck, M. W., Bewley, J. D. (1981). Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance. Can. J. Bot. 59, 2707–2712

    Article  Google Scholar 

  • Schulz M., Janben M., Knop K., Schnabl, H. (1994) Stress and age related spots with immunoreactivity to ubiquitin-antibody at protoplast surfaces. Plant Cell Physiol, 35, 551–556

    CAS  Google Scholar 

  • Scott II, H.B. Oliver, M. J. (1994) Accumulation and polysomal recruitment of transcripts in response to desiccation and rehydration of the moss Tortula ruralis. J. Expt. Bot., 45, 577–583

    Google Scholar 

  • Smirnoff, N. (1993) The role of active oxygen in the response of plants to water deficit and desiccation, Tansley Rev. No 52 New Phytol. 125, 27: 58

    Google Scholar 

  • Sophos, N.A., Pappa, A., Ziegler, T.L., Vasiliou, V. (2001) Aldehyde dehydrogenase gene superfamily: the 2000 update. Chemico-biol. Inter. 130–132, 323–337

    Article  Google Scholar 

  • Stroeher, V.L., Boothe, J.G., Good, A. G. (1995) Molecular cloning and expression of a turgor-responsive gene in Brassica napus. Plant Mol. Biol. 27, 541–551

    Article  CAS  Google Scholar 

  • Sun C.W., Callis, J. (1997) Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. The Plant J. 11, 1017–1027

    Article  CAS  Google Scholar 

  • Triwitayakorn K, Wood AJ. (2002) Characterization of two desiccation-stress related cDNAs TrDr1 and TrDr2 in the resurrection moss Tortula ruralis. S. Afr. J. Bot., 68, 545–548

    CAS  Google Scholar 

  • Thomashow, M.F. (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Ann. Rev. Plant Phys. Plant Mol. Biol. 50, 571–599.

    Article  CAS  Google Scholar 

  • Tuba, Z., Proctor, M.C.F., Csintalan, Z. (1997) Ecophysiological responses of homochlorophyllous and poikilochlorophphylous desiccation tolerant plants. Plant Growth Reg. 26, 71

    Article  Google Scholar 

  • Vasiliou, V., Bairoch, A., Tipton, K. E., Nebert, D. W. (1999) Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogen., 9, 421–434

    Article  CAS  Google Scholar 

  • Vasiliou, V., Pappa, A., Petersen, D. R. (2000) Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chemico-biol. Inter. 129, 1–19

    Article  CAS  Google Scholar 

  • Velten, J., Oliver, M. J. (2001) Tr288, A rehydrin with a dehydrin twist. Plant Mol. Biol 45, 713–722

    Article  PubMed  CAS  Google Scholar 

  • von Kampen J, Wettern M Schulz, M. (1996) The ubiquitin system in plants. Physiologia Plantarum 97, 618–624

    Article  Google Scholar 

  • Wood A.J., Duff R.J. (1999) Subunit V (PsaG) of the photosystem I reaction center (accession no. AF157017) from desiccated Tortula ruralis (PGR99–140). Plant Physiol., 121, 313

    Google Scholar 

  • Wood A.J., Krayesky S.L. (2002) The role of aldehyde dehydrogenases (ALDHs) in abiotic stress tolerance. In A.J. Wood (ed.) Molecular and biochemical responses to the environment (pp. 1–13 ). Research Signpost. Karachi India

    Google Scholar 

  • Wood A.J., Duff R.J., Oliver M.J. (1999) Expressed sequence tags (ESTs) from desiccated Tortula ruralis identify a large number of novel plant genes. Plant Cell Physiol., 40, 361–368

    Article  PubMed  CAS  Google Scholar 

  • Wood A.J., Oliver M.J. (1999) Translational control in plant stress: characterization of messenger ribonucleoprotein particles (mRNPs) in desiccated Tortula ruralis. Plant J., 18, 359–370

    Article  CAS  Google Scholar 

  • Wood A.J., Duff R.J., Oliver M.J. (2000a) The translational apparatus of Tortula ruralis: polysomal retention of transcripts encoding the ribosomal proteins RPS14, RPS16, and RPL23 in desiccated and rehydrated gametophytes. J. Expt. Bot., 51, 1655–1662

    Article  CAS  Google Scholar 

  • Wood A.J., Duff R.J., Zeng Q., Oliver M.J. (2000b) Molecular architecture of bryophyte genes: putative polyadenylation signals in cDNA 3’-ends of Tortula ruralis. The Bryologist, 103, 44–51

    CAS  Google Scholar 

  • Wood A.J., Oliver M.J., Cove D.J. (2000c) Frontiers in bryological lichenological research. I. Bryophytes as model systems. The Bryologist, 103, 128–133

    Article  Google Scholar 

  • Xiong, L. Ishitani, M. Zhu, J. K. (1999) Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant J 17, 363–72.

    Article  Google Scholar 

  • Yoshida, A., Rzhetsky, A., Hsu, L. C., Chang, C. (1998) Human aldehyde dehydrogenase gene family. Eur. J. Biochem. 251, 549–557

    Article  PubMed  CAS  Google Scholar 

  • Zeng Q., Wood A.J. (2000) A cDNA encoding ribosomal protein RPL15 from the desiccation-tolerant bryophyte Tortula ruralis: mRNA transcripts are stably maintained in desiccated and rehydrated gametophytes. Biosci. Biotech. Biochem., 64, 2221–2224

    Article  CAS  Google Scholar 

  • Zeng Q., Chen X., Wood A.J. (2002) Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity and highlight. J. Expt. Bot., 53, 1197–1205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wood, A.J., Oliver, M.J. (2004). Molecular Biology and Genomics of the Desiccation Tolerant Moss Tortula Ruralis . In: Wood, A.J., Oliver, M.J., Cove, D.J. (eds) New Frontiers in Bryology. Springer, Dordrecht. https://doi.org/10.1007/978-0-306-48568-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48568-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6569-8

  • Online ISBN: 978-0-306-48568-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics