Skip to main content

Flow Cytometric Determination of Microbial Abundances and Its Use to Obtain Indices of Community Structure and Relative Activity

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Determination of the abundances of aquatic microbes (i.e., oxygenic and anoxygenic phototrophic and heterotrophic prokaryotes, small phototrophic and heterotrophic eukaryotes and viruses) is nowadays relatively straightforward with the use of flow cytometry. In addition, the technique can be used to test for relative differences in the activity or physiological state of some of these microbial groups, and several indices of community structure can be derived from community composition and flow cytometric signal variability. The technique is sometimes also useful to determine the presence of nonliving organic and inorganic substances and their interaction with the microbes. Here, we provide comprehensive guidance in the use of flow cytometry for these purposes and finally illustrate the usefulness of some of these approaches with data generated in an experiment in which we added oil from a tanker spill to a coastal bacterioplankton community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley, New York

    Google Scholar 

  2. Gasol JM, del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64:197–224

    Google Scholar 

  3. Swan BK et al (2013) Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci U S A 110:11463–11468

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yentsch CM et al (1983) Flow cytometry and cell sorting: a technique for analysis and sorting of aquatic particles. Limnol Oceanogr 28:1275–1280

    Google Scholar 

  5. Chisholm SW et al (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Google Scholar 

  6. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Courties C et al (1994) Smallest eukaryotic organism. Nature 370:255

    Google Scholar 

  8. Dubelaar GBJ, Jonker RR (2000) Flow cytometry as a tool for the study of phytoplankton. Sci Mar 64:135–156

    Google Scholar 

  9. Dubelaar GB, Casotti R, Tarran G, Biegala IC (2007) Phytoplankton and their analysis by flow cytometry. In: Dolezei J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley, New York

    Google Scholar 

  10. Marie D, Simon N, Vaulot D (2005) Phytoplankton cell counting by flow cytometry. In: Andersen RA (ed) Algal culturing techniques. Academic, San Diego

    Google Scholar 

  11. Bailey JE et al (1977) Characterization of bacterial growth by means of flow microfluorometry. Science 198:1175–1176

    CAS  PubMed  Google Scholar 

  12. Srienc F, Arnold B, Bailey JE (1984) Characterization of intracellular accumulation of Poly-ß-hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 by flow cytometry. Biotechnol Bioeng 26:982–987

    CAS  PubMed  Google Scholar 

  13. Tyndall RL et al (1985) Application of flow cytometry to detection and characterization of Legionella spp. Appl Environ Microbiol 49:852–857

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Robertson BR, Button DK (1989) Characterizing aquatic bacteria according to population, cell size and apparent DNA content by flow cytometry. Cytometry 10:70–76

    CAS  PubMed  Google Scholar 

  15. Monfort P, Baleux B (1992) Comparison of flow cytometry and epifluorescence microscopy for counting bacteria in aquatic ecosystems. Cytometry 13:188–192

    CAS  PubMed  Google Scholar 

  16. Troussellier M, Courties C, Vaquer A (1993) Recent applications of flow cytometry in aquatic microbial ecology. Biol Cell 78:111–121

    CAS  PubMed  Google Scholar 

  17. Heldal M, Norland S, Bratbak G, Riemann B (1994) Determination of bacterial cell number and cell volume by means of flow cytometry, transmission electron microscopy, and epifluorescence microscopy. J Microbiol Methods 20:255–263

    Google Scholar 

  18. Monger BC, Landry MR (1993) Flow cytometric analysis of marine bacteria with Hoechst 33342. Mar Ecol Prog Ser 59:905–911

    CAS  Google Scholar 

  19. Li WKW, Jellett JF, Dickie PM (1995) DNA distributions in planktonic bacteria stained with TOTO or TO-PRO. Limnol Oceanogr 40:1485–1495

    CAS  Google Scholar 

  20. del Giorgio PA, Bird DF, Prairie YT, Planas D (1996) Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol Oceanogr 41:783–789

    Google Scholar 

  21. Marie D, Partensky F, Vaulot D (1996) Application of the novel DNA dyes YOYO-1, YOPRO-1 and Picogreen for flow cytometric analysis of marine prokaryotes. Appl Environ Microbiol 62:1649–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marie D, Brussard CPD, Thyrhaug R, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 65:45–52

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brussaard CPD, Marie D, Bratbak G (2000) Flow cytometric detection of viruses. J Virol Methods 85:175–182

    CAS  PubMed  Google Scholar 

  24. Brussaard CPD (2004) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70:1506–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guindulain-Rifà T et al (2002) Flow cytometric detection and quantification of heterotrophic nanoflagellates in enriched seawater and cultures. Syst Appl Microbiol 25:100–108

    PubMed  Google Scholar 

  26. Rose JM, Caron DA, Sieracki ME, Poulton N (2004) Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry. Aquat Microb Ecol 34:263–277

    Google Scholar 

  27. Zubkov MV, Burkill PH, Topping JN (2007) Flow cytometric enumeration of DNA-stained oceanic planktonic protists. J Plankton Res 29:79–86

    CAS  Google Scholar 

  28. Christaki U et al (2011) Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR Green I. Limnol Oceanogr Methods 9:329–333

    Google Scholar 

  29. Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect 2:1523–1535

    CAS  PubMed  Google Scholar 

  30. del Giorgio PA, Gasol JM (2008) Physiological structure and single-cell activity in marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley, New York, pp 243–298

    Google Scholar 

  31. Wang Y, Hammes F, De Roy K, Verstraete W, Boon N (2010) Past, present and future applications of flow cytometry in aquatic microbiology. Trends Biotechnol 28:416–424

    CAS  PubMed  Google Scholar 

  32. Crosbie ND, Pöckl M, Weisse T (2003) Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J Microbiol Methods 55:361–370

    CAS  PubMed  Google Scholar 

  33. Zubkov MV et al (2001) Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3:304–311

    CAS  PubMed  Google Scholar 

  34. Vila-Costa M, Gasol JM, Sharma S, Moran MA (2012) Community analysis of high- and low-nucleic acid-containing bacteria in NW Mediterranean coastal waters using 16S rDNA pyrosequencing. Environ Microbiol 14:1390–1402

    CAS  PubMed  Google Scholar 

  35. Stepanauskas R (2012) Single cell genomics: an individual look at microbes. Curr Opin Microbiol 15:613–620

    CAS  PubMed  Google Scholar 

  36. Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175

    CAS  Google Scholar 

  37. Zubkov MV, Tarran GA (2005) Amino acid uptake of Prochlorococcus spp. in surface waters across the South Atlantic Subtropical Front. Aquat Microb Ecol 40:241–249

    Google Scholar 

  38. Vila-Costa M, Simó R, Harada H, Gasol JM, Slezak D, Kiene RP (2006) Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314:652–654

    PubMed  Google Scholar 

  39. Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226

    CAS  PubMed  Google Scholar 

  40. Casamayor EO et al (2007) Flow cytometric identification and enumeration of photosynthetic sulfur bacteria and potential for ecophysiological studies at the single-cell level. Environ Microbiol 9:1969–1985

    CAS  PubMed  Google Scholar 

  41. Sarmento H et al (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshw Biol 53:756–771

    Google Scholar 

  42. Izaguirre I et al (2010) Macrophyte influence on the structure and productivity of photosynthetic picoplankton in wetlands. J Plankton Res 32:221–238

    CAS  Google Scholar 

  43. Lekunberri I (2008) Effects of different allochthonous carbon sources on marine bacterioplankton diversity and function. PhD Thesis. Universitat Politècnica de Catalunya

    Google Scholar 

  44. Lekunberri I et al (2010) Effects of a dust deposition event on coastal marine microbial abundance and activity, bacterial community structure and ecosystem function. J Plankton Res 32:381–396

    CAS  Google Scholar 

  45. Malits A et al (2015) Potential impacts of black carbon on the marine microbial community. Aquat Microb Ecol 75:27–42. doi:10.3354/ame01742

    Article  Google Scholar 

  46. Ferrera I et al (2015) Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands). PLoS One 10:e0118136

    PubMed  PubMed Central  Google Scholar 

  47. Minor EC, Eglinton TI, Boon JJ, Olson R (1999) Protocol for the characterization of oceanic particles via flow cytometric sorting and direct temperature-resolved mass spectrometry. Anal Chem 71:2003–2013

    CAS  Google Scholar 

  48. Brando B et al (2001) The “vanishing counting bead” phenomenon: effect on absolute CD34+ cell counting in phosphate-buffered saline-diluted leukapheresis samples. Cytometry 43:154–160

    CAS  PubMed  Google Scholar 

  49. Stomp M et al (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290–298

    PubMed  Google Scholar 

  50. Li WKW (1997) Cytometric diversity in marine ultraphytoplankton. Limnol Oceanogr 42:874–880

    CAS  Google Scholar 

  51. Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293

    CAS  PubMed  Google Scholar 

  52. Morán XAG, López-Urrutia A, Calvo-Díaz A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer ocean. Glob Chang Biol 16:1137–1144

    Google Scholar 

  53. Brunet C et al (2003) Measured photophysiological parameters used as tools to estimate vertical water movements in the coastal Mediterranean. J Plankton Res 25:1413–1425

    Google Scholar 

  54. Morán XAG et al (2015) More, smaller bacteria in response to ocean’s warming? Proc R Soc B Biol Sci 282:20150371

    Google Scholar 

  55. Calvo-Díaz A, Morán XAG, Suárez LA (2008) Seasonality of picophytoplankton chlorophyll a and biomass in the central Cantabrian Sea, southern Bay of Biscay. J Mar Syst 72:271–281

    Google Scholar 

  56. Stenuite S et al (2009) Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. J Plankton Res 31:1531–1544

    CAS  Google Scholar 

  57. Wang K, Wommack KE, Chen F (2011) Abundance and distribution of Synechococcus spp. and Cyanophages in the Chesapeake Bay. Appl Environ Microbiol 77:7459–7468

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bouvier T, del Giorgio PA, Gasol JM (2007) A comparative study of the cytometric characteristics of high and low nucleic-acid bacterioplankton cells from different aquatic ecosystems. Environ Microbiol 9:2050–2066

    CAS  PubMed  Google Scholar 

  59. Morán XAG, Calvo-Díaz A (2009) Single-cell vs. bulk activity properties of coastal bacterioplankton over an annual cycle in a temperate ecosystem. FEMS Microbiol Ecol 67:43–56

    PubMed  Google Scholar 

  60. Schiaffino MR, Gasol JM, Izaguirre I, Unrein F (2013) Picoplankton abundance and cytometric group diversity along a trophic and latitudinal lake gradient. Aquat Microb Ecol 68:231–250

    Google Scholar 

  61. Li WKW (2002) Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419:154–157

    CAS  PubMed  Google Scholar 

  62. García FC et al (2015) Seasonality in molecular and cytometric diversity of marine bacterioplankton: the reshuffling of bacterial taxa by vertical mixing. Environ Microbiol. doi:10.1111/1462-2920.12984

    Article  PubMed  Google Scholar 

  63. Veldhuis MJ, Kraay GW (1990) Vertical distribution and pigment composition of a picoplanktonic prochlorophyte in the subtropical North Atlantic: a combined study of HPLC-analysis of pigments and flow cytometry. Mar Ecol Prog Ser 68:121–127

    CAS  Google Scholar 

  64. Latimer P (1982) Light Scattering and absorption as methods of studying cell population parameters. Ann Rev Biophys Bioeng 11:129–150

    CAS  Google Scholar 

  65. Button DK, Robertson BP (1993) Use of high-resolution flow cytometry to determine the activity and distribution of aquatic bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton

    Google Scholar 

  66. O’Brien TD, Li WKW, Morán XAG (eds) ICES Phytoplankton and microbial ecology status report 2010/2012. ICES Cooperative Research Report No 313

    Google Scholar 

  67. Mella-Flores D et al (2012) Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and UV stress. Front Microbiol 3:285. doi:10.3389/fmicb.2012.00285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gasol JM et al (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schattenhofer M et al (2011) Phylogenetic characterisation of picoplanktonic populations with high and low nucleic acid content in the North Atlantic Ocean. Syst Appl Microbiol 34:470–475

    PubMed  Google Scholar 

  70. del Giorgio PA, Bouvier TC (2002) Linking the physiologic and phylogenetic successions in free-living bacterial communities along an estuarine salinity gradient. Limnol Oceanogr 47:471–486

    Google Scholar 

  71. Smith EM (1998) Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community. Aquat Microb Ecol 16:27–35

    Google Scholar 

  72. Sarmento H et al (2015) Microbial food web components, bulk metabolism, and single-cell physiology of piconeuston in surface microlayers of high-altitude lakes. Front Microbiol 6:361. doi:10.3389/fmicb.2015.00361

    Article  PubMed  PubMed Central  Google Scholar 

  73. Teira E et al (2007) Dynamics of the hydrocarbon-degrading Cycloclasticus bacteria during mesocosm-simulated oil spills. Environ Microbiol 9:2551–2562

    CAS  PubMed  Google Scholar 

  74. Lekunberri I et al (2010) Changes in bacterial activity and community composition caused by exposure to a simulated oil spill in microcosm and mesocosm experiments. Aquat Microb Ecol 59:169–183

    Google Scholar 

  75. Picot J et al (2012) Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology 64:109–130

    PubMed  PubMed Central  Google Scholar 

  76. Brussaard CP, Payet JP, Winter C, Weinbauer MG (2010) Quantification of aquatic viruses by flow cytometry. Manual of aquatic viral ecology (ASLO Chapter 11), pp 102–109

    Google Scholar 

  77. Hahna F et al (2009) flowCore: a bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:145. doi:10.1186/1471-2105-10-145

    Article  CAS  Google Scholar 

  78. Baudoux A et al (2006) Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters. Aquat Microb Ecol 44:207–217

    Google Scholar 

  79. Lawrence JE, Brussaard CP, Suttle CA (2006) Virus-specific responses of Heterosigma akashiwo to infection. Appl Environ Microbiol 72:7829–7834

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zubkov MV, Burkill PH (2006) Syringe pumped high speed flow cytometry of oceanic phytoplankton. Cytometry A 69:1010–1019

    PubMed  Google Scholar 

  81. Grégori G et al (2001) Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining. Appl Environ Microbiol 67:4662–4670

    PubMed  PubMed Central  Google Scholar 

  82. Falcioni T, Papa S, Gasol JM (2008) Evaluating the flow cytometric Nucleic Acid Double Staining Protocol (NADS) in realistic planktonic bacterial death situations. App. Environ Microbiol 74:1767–1779

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Gasol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Gasol, J.M., Morán, X.A.G. (2015). Flow Cytometric Determination of Microbial Abundances and Its Use to Obtain Indices of Community Structure and Relative Activity. In: McGenity, T.J., Timmis, K.N., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_139

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_139

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49129-4

  • Online ISBN: 978-3-662-49131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics