Skip to main content

Computational Methods in the Modeling of Scaffolds for Tissue Engineering

  • Chapter
  • First Online:
Computational Modeling in Tissue Engineering

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 10))

Abstract

Tissue engineering uses porous biomaterial scaffolds to support the complex tissue healing process to fulfill two main functions: (1) to support mechanical loading and (2) to allow mass transport. Computational methods have been extensively applied to characterize scaffold morphology and to simulate different biological processes of tissue engineering. In addition, phenomena such a cell seeding, cell migration, cell proliferation, cell differentiation, vascularisation, oxygen consumption, mass transport or scaffold degradation can be simulated using computational methods. A review of the different methods used to model scaffolds in tissue engineering is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer, R., Vacanti, J.P., Vacanti, C.A., Atala, A., Freed, L.E., Vunjak-Novakovic, G.: Tissue engineering: biomedical applications. Tissue Eng. 1(2), 151–161 (1995)

    Article  Google Scholar 

  2. Williams, D.F.: On the nature of biomaterials. Biomaterials 30(30), 5897–5909 (2009)

    Article  Google Scholar 

  3. Hollister, S.J.: Scaffold engineering: a bridge to where? Biofabrication 1(1, 012001), 1–14 (2009)

    Google Scholar 

  4. Bohner, M., Loosli, Y., Baroud, G., Lacroix, D.: Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 7(2), 478–484 (2011)

    Article  Google Scholar 

  5. Olivares, A.L., Marsal, E., Planell, J.A., Lacroix, D.: Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30(30), 6142–6149 (2009)

    Article  Google Scholar 

  6. Liu, C., Xia, Z., Czernuszka, J.: Design and development of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Des. 85(7), 1051–1064 (2007)

    Article  Google Scholar 

  7. Sandino, C., Planell, J.A., Lacroix, D.: A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41(5), 1005–1014 (2008)

    Article  Google Scholar 

  8. Cioffi, M., Boschetti, F., Raimondi, M.T., Dubini, G.: Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol. Bioeng. 93(3), 500–510 (2006)

    Article  Google Scholar 

  9. Lacroix, D., Chateau, A., Ginebra, M.-P., Planell, J.A.: Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27(30), 5326–5334 (2006)

    Article  Google Scholar 

  10. Milan, J.-L., Planell, J.A., Lacroix, D.: Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech. Model. Mechanobiol. 9(5), 583–596 (2010)

    Article  Google Scholar 

  11. Saey, H., Hutmacher, D.W.: Application of micro CT and computation modeling in bone tissue engineering. Comput. Aided Des. 37(11), 1151–1161 (2005)

    Article  Google Scholar 

  12. Melchels, F.P.W., Tonnarelli, B., Olivares, A.L., et al.: The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32, 2878–2884 (2011)

    Article  Google Scholar 

  13. Milan, J.-L., Planell, J.A., Lacroix, D.: Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold. Biomaterials 30(25), 4219–4226 (2009)

    Article  Google Scholar 

  14. Melchels, F.P.W., Bertoldi, K., Gabbrielli, R., Velders, A.H., Feijen, J., Grijpma, D.W.: Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27), 6909–6916 (2010)

    Article  Google Scholar 

  15. Bohner, M., Baumgart, F.: Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25(17), 3569–3582 (2004)

    Article  Google Scholar 

  16. Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M.: On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater. 5(1), 219–229 (2009)

    Article  Google Scholar 

  17. Adachi, T., Osako, Y., Tanaka, M., Hojo, M., Hollister, S.J.: Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21), 3964–3972 (2006)

    Article  Google Scholar 

  18. Adachi, T., Kameo, Y., Hojo, M.: Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress. Philos. Trans. A Math. Phys. Eng. Sci. 368(1920), 2669–2682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Adachi, T., Tsubota, K.-ichi, Tomita, Y., Hollister, S.J.: Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J. Biomech. Eng. 23(5), 403 (2001)

    Article  Google Scholar 

  20. Cheah, C.M., Chua, C.K., Leong, K.F., Chua, S.W.: Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. Int. J. Adv. Manuf. Tech. 21(4), 291–301 (2003)

    Article  Google Scholar 

  21. Cheah, C.M., Chua, C.K., Leong, K.F., Chua, S.W.: Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: parametric library and assembly program. Int. J. Adv. Manuf. Tech. 21(4), 302–312 (2003)

    Article  Google Scholar 

  22. Hollister, S., Lin, C.: Computational design of tissue engineering scaffolds. Comput. Methods Appl. Mech. Eng. 196(31–32), 2991–2998 (2007)

    Article  MATH  Google Scholar 

  23. Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4(7), 518–524 (2005)

    Article  Google Scholar 

  24. Hollister, S.J., Maddox, R.D., Taboas, J.M.: Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20), 4095–4103 (2002)

    Article  Google Scholar 

  25. Shipley, R.J., et al.: Design criteria for a printed tissue engineering construct: a mathematical homogenization approach. J. Theor. Biol. 259(3), 489–502 (2009)

    Article  Google Scholar 

  26. Wendt, D., Stroebel, S., Jakob, M., John, G.T., Martin, I.: Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions. Biorheology 43(3–4), 481–488 (2006)

    Google Scholar 

  27. Wendt, D., Marsano, A., Jakob, M., Heberer, M., Martin, I.: Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol. Bioeng. 84(2), 205–214 (2003)

    Article  Google Scholar 

  28. Santoro, R., Olivares, A.L., Brans, G., et al.: Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. Biomaterials 31(34), 8946–8952 (2010)

    Article  Google Scholar 

  29. Prendergast, P.J., Huiskes, R., Søballe, K.: Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6), 539–548 (1997)

    Article  Google Scholar 

  30. Huiskes, R., Van Driel, W.D., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J. Mater. Sci. Mater. Med. 8(12), 785–788 (1997)

    Article  Google Scholar 

  31. Lacroix, D., Prendergast, P.J., Li, G., Marsh, D.: Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med. Biol. Eng. Compu. 40(1), 14–21 (2002)

    Article  Google Scholar 

  32. Kelly, D.J., Prendergast, P.J.: Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38(7), 1413–1422 (2005)

    Article  Google Scholar 

  33. Geris, L., Vandamme, K., Naert, I., Vander Sloten, J., Duyck, J., Van Oosterwyck, H.: Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber. J. Biomech. 41(1), 145–154 (2008)

    Article  Google Scholar 

  34. Geris, L., Gerisch, A., Sloten, J.V., Weiner, R., Oosterwyck, H.V.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251(1), 137–158 (2008)

    Article  Google Scholar 

  35. Isaksson, H., et al.: Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J. Biomech. 40(9), 2002–2011 (2007)

    Article  Google Scholar 

  36. Sandino, C., Lacroix D.: A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models. Biomech Model Mechanobiol. (2010)

    Google Scholar 

  37. Lacroix, D., Prendergast, P.J.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9), 1163–1171 (2002)

    Article  Google Scholar 

  38. Pérez, M.A., Prendergast, P.J.: Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J. Biomech. 40(10), 2244–2253 (2007)

    Article  Google Scholar 

  39. Byrne, D.P., Lacroix, D., Planell, J.A., Kelly, D.J., Prendergast, P.J.: Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28(36), 5544–5554 (2007)

    Article  Google Scholar 

  40. Checa, S., Prendergast, P.J.: A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37(1), 129–145 (2009)

    Article  Google Scholar 

  41. Sandino, C., Checa, S., Prendergast, P.J., Lacroix, D.: Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 31(8), 2446–2452 (2010)

    Article  Google Scholar 

  42. Puleo, D.A., Nanci, A.: Understanding and controlling the bone–implant interface. Biomaterials 20(23–24), 2311–2321 (1999)

    Article  Google Scholar 

  43. Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M.: Scaffold microarchitecture determines internal bone directional growth structure: a numerical study. J. Biomech. 43(13), 2480–2486 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Lacroix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olivares, A.L., Lacroix, D. (2012). Computational Methods in the Modeling of Scaffolds for Tissue Engineering. In: Geris, L. (eds) Computational Modeling in Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_136

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_136

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32562-5

  • Online ISBN: 978-3-642-32563-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics