Skip to main content

Functional Biomaterials for Controlling Stem Cell Differentiation

  • Chapter
  • First Online:
Biomaterials as Stem Cell Niche

Abstract

Differentiation of stem cells has shown to be strongly influenced through several cues provided by reciprocal interactions with the extracellular microenvironment, consisting of soluble bioactive agents and the extracellular matrix.While the dynamic extracellular matrix is difficult to mimic in its entirety, recent research has successfully mimicked individual matrix-centric cues using synthetic polymeric systems to influence differentiation of stem cells into tissue-specific lineages. Material properties that have been shown to direct this differentiation include chemical functionality, mechanical properties, as well as tissue-mimetic modifications such as mineralization. Another aspect of the extracellular microenvironment that has been mimicked in the controlled differentiation of stem cells is the presence of specific bioactive agents. Material-based delivery of these agents allows for the spatiotemporal variation in their presentation to stem cells, allowing for precise control over their terminally differentiated phenotype. Thus, the delivery of bioactive agents to cells via synthetic materials has also been an effective method to influence stem cell differentiation to various tissue-specific lineages. In this chapter, we discuss the use of synthetic materials to direct stem cell differentiation through both, capitulation of matrix-specific biochemical, mechanical and physical cues, as well as the controlled delivery of specific bioactive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson, J.A. et al.: Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145–1147 (1998)

    Google Scholar 

  2. Hwang, N.S., Varghese, S., Elisseeff, J.: Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60(2), 199–214 (2008)

    Google Scholar 

  3. Atala, A., et al. (eds): Principles of Regenerative Medicine, vol. 1448. Elsevier, Burlington (2008)

    Google Scholar 

  4. Okita, K., Ichisaka, T., Yamanaka, S.: Generation of germline-competent induced pluripotent stem cells. Nature 448(7151), 313–317 (2007)

    Google Scholar 

  5. Takahashi, K., et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007)

    Google Scholar 

  6. Takahashi, K., Yamanaka, S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)

    Google Scholar 

  7. Yu, J., et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858), 1917–1920 (2007)

    Google Scholar 

  8. Daley, W.P., Peters, S.B., Larsen, M.: Extracellular matrix dynamics in development and regenerative medicine. J. Cell Sci. 121(Pt 3), 255–264 (2008)

    Google Scholar 

  9. Engler, A.J., et al.: Multiscale modeling of form and function. Science 324(5924), 208–212 (2009)

    Google Scholar 

  10. Page-McCaw, A., Ewald, A.J., Werb, Z.: Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell. Biol. 8(3), 221–233 (2007)

    Google Scholar 

  11. Datta, N.H., et al.: In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc. Natl Acad. Sci. USA 103(8), 2488–2493 (2006)

    Google Scholar 

  12. Hoshiba, T., et al.: Development of stepwise osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell functions. J. Biol. Chem. (2009)

    Google Scholar 

  13. Chung, C., Burdick, J.A.: Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng. Part A 15(2), 243–254 (2008)

    Google Scholar 

  14. Nöth, U., et al.: Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J. Biomed. Mater. Res. Part A 83A(3), 626–635 (2007)

    Google Scholar 

  15. Yokoyama, A., et al.: In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res. 322(2), 289–298 (2005)

    Google Scholar 

  16. Brännvall, K., et al.: Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J. Neurosci. Res. 85(10), 2138–2146 (2007)

    Google Scholar 

  17. Awad, H.A., et al.: Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16), 3211–3222 (2004)

    Google Scholar 

  18. Thomson, R., et al.: Biodegradable polymer scaffolds to regenerate organs. Biopolymers II 122, 245–274 (1995)

    Google Scholar 

  19. Banerjee, A., et al.: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30(27), 4695–4699 (2009)

    Google Scholar 

  20. Benoit, D.S.W., et al.: Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater. 7(10), 816–823 (2008)

    Google Scholar 

  21. Engler, A.J., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)

    Google Scholar 

  22. Guo, L., et al.: Chondrogenic differentiation of human mesenchymal stem cells on photoreactive polymer-modified surfaces. Biomaterials 29(1), 23–32 (2008)

    Google Scholar 

  23. Huang, S., Ingber, D.E.: Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp. Cell Res. 261(1), 91–103 (2000)

    Google Scholar 

  24. Lieb, E., et al.: Poly(d,l-lactic acid)–poly(ethylene glycol)–monomethyl ether diblock copolymers control adhesion and osteoblastic differentiation of marrow stromal cells. Tissue Eng. 9(1), 71–84 (2004)

    Google Scholar 

  25. McBeath, R., et al.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6(4), 483–495 (2004)

    Google Scholar 

  26. Mwale, F., et al.: The effect of glow discharge plasma surface modification of polymers on the osteogenic differentiation of committed human mesenchymal stem cells. Biomaterials 27(10), 2258–2264 (2006)

    Google Scholar 

  27. Watt, F.M., Jordan, P.W., O’Neill, C.H.: Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl Acad. Sci. USA 85(15), 5576–5580 (1988)

    Google Scholar 

  28. Drumheller, P.D., Hubbell, J.A.: Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. Anal. Biochem. 222(2), 380–388 (1994)

    Google Scholar 

  29. Neff, J.A., Tresco, P.A., Caldwell, K.D.: Surface modification for controlled studies of cell–ligand interactions. Biomaterials 20(23–24), 2377–2393 (1999)

    Google Scholar 

  30. Banerjee, P., et al.: Polymer latexes for cell-resistant and cell-interactive surfaces. J. Biomed. Mater. Res. 50(3), 331–339 (2000)

    Google Scholar 

  31. Jo, S., Engel, P.S., Mikos, A.G.: Synthesis of poly(ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide. Polymer 41(21), 7595–7604 (2000)

    Google Scholar 

  32. Lutolf, M.P., Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotech. 23(1), 47–55 (2005)

    Google Scholar 

  33. Massia, S.P., Hubbell, J.A.: Convalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Anal. Biochem. 187(2), 292–301 (1990)

    Google Scholar 

  34. Santiago, L.Y., et al.: Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27(15), 2962–2969 (2006)

    Google Scholar 

  35. Pierschbacher, M.D., Ruoslahti, E.: Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J. Biol. Chem. 262(36), 17294–17298 (1987)

    Google Scholar 

  36. Irvine, D.J., Mayes, A.M., Griffith, L.G.: Nanoscale clustering of RGD peptides at surfaces using comb polymers. 1. Synthesis and characterization of comb thin films. Biomacromolecules 2(1), 85–94 (2000)

    Google Scholar 

  37. Silva, G.A., et al.: Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662), 1352–1355 (2004)

    Google Scholar 

  38. Salinas, C.N., Anseth, K.S.: Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J. Biomed. Mater. Res. Part A 90A(2), 456–464 (2009)

    Google Scholar 

  39. Hwang, N.S., et al.: Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng. 12(9), 2695–2706 (2006)

    Google Scholar 

  40. Hu, Y., et al.: Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. J. Biomed. Mater. Res. 64A(3), 583–590 (2003)

    Google Scholar 

  41. Huang, H., et al.: Enhanced osteoblast functions on RGD immobilized surface. J. Oral Implantol. 29(2), 73–79 (2003)

    Google Scholar 

  42. Shin, H., et al.: Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and [beta]-glycerol phosphate. Biomaterials 26(17), 3645–3654 (2005)

    Google Scholar 

  43. Kundu, A.K., Khatiwala, C.B., Putnam, A.J.: Extracellular matrix remodeling, integrin expression, and downstream signaling pathways influence the osteogenic differentiation of mesenchymal stem cells on poly(lactide-co-glycolide) substrates. Tissue Eng. Part A 15(2), 273–283 (2008)

    Google Scholar 

  44. Moursi, A.M., Globus, R.K., Damsky, C.H.: Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J. Cell Sci. 110(18), 2187–2196 (1997)

    Google Scholar 

  45. Boyan, B.D., et al., Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2), 137–146 (1996)

    Google Scholar 

  46. Burdick, J.A., Vunjak-Novakovic, G.: Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. Part A 15(2), 205–219 (2008)

    Google Scholar 

  47. Mwale, F., et al.: Suppression of genes related to hypertrophy and osteogenesis in committed human mesenchymal stem cells cultured on novel nitrogen-rich plasma polymer coatings. Tissue Eng. 12(9), 2639–2647 (2006)

    Google Scholar 

  48. Wan, Y., et al.: Cell adhesion on gaseous plasma modified poly-(-lactide) surface under shear stress field. Biomaterials 24(21), 3757–3764 (2003)

    Google Scholar 

  49. Jiao, Y.-P., Cui, F.-Z.: Surface modification of polyester biomaterials for tissue engineering. Biomed. Mater. 2(R), 24–37 (2007)

    Google Scholar 

  50. Croll, T.I., et al.: Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis i: physical, chemical, and theoretical aspects. Biomacromolecules 5(2), 463–473 (2004)

    Google Scholar 

  51. Chu, P.K., et al.: Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Reports 36(5–6), 143–206 (2002)

    Google Scholar 

  52. Chastain, S.R., et al.: Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res. Part A 78A(1), 73–85 (2006)

    Google Scholar 

  53. Curran, J.M., Chen, R., Hunt, J.A.: Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 26(34), 7057–7067 (2005)

    Google Scholar 

  54. Curran, J.M., Chen, R., Hunt, J.A.: The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27(27), 4783–4793 (2006)

    Google Scholar 

  55. Lee, J.H., et al.: Cell behaviour on polymer surfaces with different functional groups. Biomaterials 15(9), 705–711 (1994)

    Google Scholar 

  56. Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. PNAS 102(17), 5953–5957 (2005)

    Google Scholar 

  57. Michael, K.E., et al.: Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 19(19), 8033–8040 (2003)

    MathSciNet  Google Scholar 

  58. Cheng, S.-L., et al.: Bone mineralization and osteoblast differentiation are negatively modulated by integrin αvβ3. J. Bone Miner. Res. 16(2), 277–288 (2006)

    Google Scholar 

  59. Andrade, J.D.: Interfacial phenomena and biomaterials. Med. Instrumen. 7(2), 110–119 (1973)

    MathSciNet  Google Scholar 

  60. Baszkin, A., Lyman, D.J.: The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption. J. Biomed. Mater. Res. 14(4), 393–403 (1980)

    Google Scholar 

  61. Kennedy, S.B., et al.: Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation. Biomaterials 27(20), 3817–3824 (2006)

    Google Scholar 

  62. Jansen, E.J.P., et al.: Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Biomaterials 26(21), 4423–4431 (2005)

    Google Scholar 

  63. Mahmood, T.A., et al.: Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C. Exp. Cell Res. 301(2), 179–188 (2004)

    MathSciNet  Google Scholar 

  64. Schneider, G.B., et al.: The effect of hydrogel charge density on cell attachment. Biomaterials 25(15), 3023–3028 (2004)

    Google Scholar 

  65. Boyan, B.D., et al.: Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2. Biomaterials 20(23–24), 2305–2310 (1999)

    Google Scholar 

  66. Kieswetter, K., et al.: Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J. Biomed. Mater. Res. 32(1), 55–63 (1996)

    Google Scholar 

  67. Dalby, M.J., et al.: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6(12), 997–1003 (2007)

    Google Scholar 

  68. Ducheyne, P., Qiu, Q.: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20(23–24), 2287–2303 (1999)

    Google Scholar 

  69. Gamsjäger, S., et al.: In: Maher, S.A. (ed.) Raman application in bone imaging, in Raman spectroscopy for soft matter applications, pp. 225–267. Wiley, New York (2009)

    Google Scholar 

  70. Oyane, A., et al.: Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. Part A 65A(2), 188–195 (2003)

    Google Scholar 

  71. Kretlow, J.D., Mikos, A.G.: Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 13(5), 927–938 (2007)

    Google Scholar 

  72. Filmon, R., et al.: Effects of negatively charged groups (carboxymethyl) on the calcification of poly(2-hydroxyethyl methacrylate). Biomaterials 23, 3053–3059 (2002)

    Google Scholar 

  73. Zainuddin, et al.: In-vitro study of the spontaneous calcification of PHEMA-based hydrogels in simulated body fluid. J. Mater. Sci. Mater. Med. 17(12), 1245–1254 (2006)

    Google Scholar 

  74. Song, J., Saiz, E., Bertozzi, C.R.: A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites. J. Am. Chem. Soc. 125(5), 1236–1243 (2003)

    Google Scholar 

  75. Oyane, A., et al.: Simple surface modification of poly([epsilon]-caprolactone) for apatite deposition from simulated body fluid. Biomaterials 26(15), 2407–2413 (2005)

    Google Scholar 

  76. Murphy, W.L., Mooney, D.J.: Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. J. Am. Chem. Soc. 124(9), 1910–1917 (2002)

    Google Scholar 

  77. Koç, A., et al.: In vitro osteogenic differentiation of rat mesenchymal stem cells in a microgravity bioreactor. J. Bioactive Comp. Polym. 23(3), 244–261 (2008)

    Google Scholar 

  78. Osathanon, T., et al.: Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 29(30), 4091–4099 (2008)

    Google Scholar 

  79. Dvorak, M.M., et al.: Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl Acad. Sci. USA 101(14), 5140–5145 (2004)

    Google Scholar 

  80. Yuan, H., et al.: Osteoinduction by calcium phosphate biomaterials. J. Mater. Sci. Mater. Med. 9(12), 723–726 (1998)

    Google Scholar 

  81. Yu, H.-S., Hong, S.-J., Kim, H.-W.: Surface-mineralized polymeric nanofiber for the population and osteogenic stimulation of rat bone-marrow stromal cells. Mater. Chem. Phys. 113(2–3), 873–877 (2009)

    Google Scholar 

  82. Ingber, D.E.: Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20(7), 811–827 (2006)

    Google Scholar 

  83. Schwartz, M.A., DeSimone, D.W.: Cell adhesion receptors in mechanotransduction. Curr. Opin. Cell Biol. 20(5), 551–556 (2008)

    Google Scholar 

  84. Hu, S., Chen, J., Wang, N.: Cell spreading controls balance of prestress by microtubules and extracellular matrix. Front Biosci. 9, 2177–2182 (2004)

    Google Scholar 

  85. Chen, C.S., et al.: Geometric control of cell life and death. Science 276(5317), 1425–1428 (1997)

    Google Scholar 

  86. Discher, D.E., Janmey, P., Wang, Y.-L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)

    Google Scholar 

  87. Khatiwala, C.B., et al.: ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24(5), 886–898 (2008)

    Google Scholar 

  88. Schuldiner, M., et al.: Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 97(21), 11307–11312 (2000)

    Google Scholar 

  89. Park, T.G., Lu, W., Crotts, G.: Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly (-lactic acid-co-glycolic acid) microspheres. J. Control. Release 33(2), 211–222 (1995)

    Google Scholar 

  90. Uebersax, L., Merkle, H.P., Meinel, L.: Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J. Control. Release 127(1), 12–21 (2008)

    Google Scholar 

  91. Park, K., et al.: Functional PLGA scaffolds for chondrogenesis of bone-marrow-derived mesenchymal stem cells. Macromol. Biosci. 9(3), 221–229 (2009)

    Google Scholar 

  92. Basmanav, F.B., Kose, G.T., Hasirci, V.: Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 29(31), 4195–4204 (2008)

    Google Scholar 

  93. Takemoto, S., et al.: Preparation of collagen/gelatin sponge scaffold for sustained release of bFGF. Tissue Eng. Part A 14(10), 1629–1638 (2008)

    Google Scholar 

  94. Niu, X., et al.: Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J. Control. Release 134(2), 111–117 (2009)

    Google Scholar 

  95. van de Weert, M., Hennink, W.E., Jiskoot, W.: Protein Instability in Poly(Lactic-co-Glycolic Acid) Microparticles. Pharm. Res. 17(10), 1159–1167 (2000)

    Google Scholar 

  96. Park, K., et al.: The use of chondrogenic differentiation drugs to induce stem cell differentiation using double bead microsphere structure. Biomaterials 29(16), 2490–2500 (2008)

    Google Scholar 

  97. Sachlos, E., Auguste, D.T.: Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29(34), 4471–480 (2008)

    Google Scholar 

  98. Joliot, A., Prochiantz, A.: Transduction peptides: from technology to physiology. Nat Cell. Biol. 6(3), 189–196 (2004)

    Google Scholar 

  99. Tsakiridis, A., et al.: Microsphere-based tracing and molecular delivery in embryonic stem cells. Biomaterials 30(29), 5853–5861 (2009)

    Google Scholar 

  100. Carpenedo, R.L., et al.: Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules. Biomaterials 30(13), 2507–2515 (2009)

    Google Scholar 

  101. Newman, K.D., McBurney, M.W.: Poly(d,llactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials 25(26), 5763–5771 (2004)

    Google Scholar 

  102. Nojehdehian, H., et al.: Preparation and surface characterization of poly-l-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: in vitro study. Colloids Surf. B Biointerfaces 73(1), 23–29 (2009)

    Google Scholar 

  103. Oliveira, J.M., et al.: The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials 30(5), 804–813 (2009)

    Google Scholar 

  104. Benoit, D.S., Durney, A.R., Anseth, K.S.: The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 28(1), 66–77 (2007)

    Google Scholar 

  105. Benoit, D.S.W., Anseth, K.S.: Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater. 1(4), 461–470 (2005)

    Google Scholar 

  106. Benoit, D.S., Collins, S.D., Anseth, K.S.: Multifunctional hydrogels that promote osteogenic human mesenchymal stem cell differentiation through stimulation and sequestering of bone morphogenic protein 2. Adv. Funct. Mater. 17(13), 2085–2093 (2007)

    Google Scholar 

  107. Centrella, M., et al.: Transforming growth factor-{beta} gene family members and bone. Endocr. Rev. 15(1), 27–39 (1994)

    Google Scholar 

  108. Haas, A.R., Tuan, R.S.: Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. Differentiation 64(2), 77–89 (1999)

    Google Scholar 

  109. Park, H., et al.: Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J. Biomed. Mater. Res. A 88(4), 889–897 (2009)

    Google Scholar 

  110. Wang, X., et al.: Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control. Release 134(2), 81–90 (2009)

    Google Scholar 

  111. Sharma, B., et al.: In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plastic Reconstr. Surg. 119(1), 112–120 (2007) 10.1097/01.prs.0000236896.22479.52

    Google Scholar 

  112. Alhadlaq, A., Mao, J.J.: Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells. J. Dent. Res. 82(12), 951–956 (2003)

    Google Scholar 

  113. Alhadlaq, A., et al.: Adult stem cell driven genesis of human-shaped articular condyle. Ann. Biomed. Eng. 32(7), 911–923 (2004)

    Google Scholar 

  114. Chai, C., Leong, K.W.: Biomaterials approach to expand and direct differentiation of stem cells. Mol. Ther. 15(3), 467–480 (2007)

    Google Scholar 

  115. Levenberg, S., et al.: Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc. Natl Acad. Sci. USA 100(22), 12741–12746 (2003)

    Google Scholar 

  116. Cho, S.-W., et al.: Engineering of volume-stable adipose tissues. Biomaterials 26(17), 3577–3585 (2005)

    Google Scholar 

  117. Lee, P.Y., et al.: Thermosensitive hydrogel PEG–PLGA–PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound. Mol. Ther. 15(6), 1189–1194 (2007)

    Google Scholar 

  118. Boldrin, L., et al.: Efficient delivery of human single fiber-derived muscle precursor cells via biocompatible scaffold. Cell Transplant. 17, 577–584 (2008)

    Google Scholar 

  119. Kim, M., et al.: Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres. Biochem. Biophys. Res. Commun. 348(2), 386–392 (2006)

    Google Scholar 

  120. Walker, E., et al.: Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment. Cell Stem Cell 1(1), 71–86 (2007)

    Google Scholar 

  121. Sampath, P., et al.: A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2(5), 448–460 (2008)

    MathSciNet  Google Scholar 

  122. Yao, S., et al.: Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103(18), 6907–6912 (2006)

    Google Scholar 

  123. Anderson, D.G., Levenberg, S., Langer, R.: Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotech. 22(7), 863–866 (2004)

    Google Scholar 

  124. Toohey, K.S., et al.: Self-healing materials with microvascular networks. Nat. Mater. 6(8), 581–585 (2007)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the California Institute for Regenerative Medicine and the University of California, San Diego. Assistance from Dr. Ramsés Ayala and Dr. Nivedita Sangaj in the preparation and review of this manuscript is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyni Varghese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phadke, A., Chang, CW., Varghese, S. (2010). Functional Biomaterials for Controlling Stem Cell Differentiation. In: Roy, K. (eds) Biomaterials as Stem Cell Niche. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_2

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13892-8

  • Online ISBN: 978-3-642-13893-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics