Skip to main content

Mycobacterium Tuberculosis Metabolism and Host Interaction: Mysteries and Paradoxes

  • Chapter
  • First Online:
Pathogenesis of Mycobacterium tuberculosis and its Interaction with the Host Organism

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 374))

Abstract

Metabolism is a widely recognized facet of all host–pathogen interactions. Knowledge of its roles in pathogenesis, however, remains comparatively incomplete. Existing studies have emphasized metabolism as a cell autonomous property of pathogens used to fuel replication in a quantitative, rather than qualitatively specific, manner. For Mycobacterium tuberculosis, however, matters could not be more different. M. tuberculosis is a chronic facultative intracellular pathogen that resides in humans as its only known host. Within humans, M. tuberculosis resides chiefly within the macrophage phagosome, the cell type, and compartment most committed to its eradication. M. tuberculosis has thus evolved its metabolic network to both maintain and propagate its survival as a species within a single host. The specific ways in which its metabolic network serves these distinct, through interdependent, functions, however, remain incompletely defined. Here, we review existing knowledge of the M. tuberculosis–host interaction, highlighting the distinct phases of its natural life cycle and the diverse microenvironments encountered therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso S, Pethe K, Russell DG, Purdy GE (2007) Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci USA 104:6031–6036. doi:10.1073/pnas.0700036104

    PubMed  CAS  Google Scholar 

  • Aly S, Wagner K, Keller C et al (2006) Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 210:298–305. doi:10.1002/path.2055

    PubMed  CAS  Google Scholar 

  • ArgĂĽelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224. doi:10.1007/s002030000192

    PubMed  Google Scholar 

  • Barry CE, Boshoff HI, Dartois V et al (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Micro 7:845–855. doi:10.1038/nrmicro2236

    CAS  Google Scholar 

  • Baughn AD, Garforth SJ, Vilchèze C, Jacobs WR (2009) An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis. PLoS Pathog 5:e1000662. doi:10.1371/journal.ppat.1000662

    PubMed  Google Scholar 

  • Beste DJV, Bonde B, Hawkins N et al (2011) C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in Mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog 7:e1002091. doi:10.1371/journal.ppat.1002091

    PubMed  CAS  Google Scholar 

  • Betts JC, Lukey PT, Robb LC et al (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731

    PubMed  CAS  Google Scholar 

  • Bloch H, Segal W (1956) Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72:132–141

    PubMed  CAS  Google Scholar 

  • Blumenthal A, Trujillo C, Ehrt S, Schnappinger D (2010) Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS One 5:e15667. doi:10.1371/journal.pone.0015667

    PubMed  CAS  Google Scholar 

  • Bodnar KA, Serbina NV, Flynn JL (2001) Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect Immun 69:800–809. doi:10.1128/IAI.69.2.800-809.2001

    PubMed  CAS  Google Scholar 

  • Boshoff H, Barry C (2005) Tuberculosis—metabolism and respiration in the absence of growth. Nat Rev Micro 3:70–80

    CAS  Google Scholar 

  • Bowden S, Rowley G, Hinton J, Thompson A (2009) Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Inf Immun 77:3117

    CAS  Google Scholar 

  • Brown MS, Goldstein JL (2008) Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res 50:S15–S27. doi:10.1194/jlr.R800054-JLR200

    PubMed  Google Scholar 

  • Carroll JD, Pastuszak I, Edavana VK et al (2007) A novel trehalase from Mycobacterium smegmatis—purification, properties, requirements. FEBS J 274:1701–1714. doi:10.1111/j.1742-4658.2007.05715.x

    PubMed  CAS  Google Scholar 

  • Chang JC, Miner MD, Pandey AK et al (2009) Igr genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191:5232–5239. doi:10.1128/JB.00452-09

    PubMed  CAS  Google Scholar 

  • Chen L, Vitkup D (2007) Distribution of orphan metabolic activities. Trends Biotechnol 25:343–348. doi:10.1016/j.tibtech.2007.06.001

    PubMed  Google Scholar 

  • Chico-Calero I, Suárez M, González-Zorn B et al (2001) Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci USA 99:431–436. doi:10.1073/pnas.012363899

    PubMed  Google Scholar 

  • Chien A-C, Hill NS, Levin PA (2012) Cell size control in bacteria. Curr Biol 22:R340–R349. doi:10.1016/j.cub.2012.02.032

    PubMed  CAS  Google Scholar 

  • Choi H-S, Rai PR, Chu HW et al (2002) Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med 166:178–186

    PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    PubMed  CAS  Google Scholar 

  • CĂ´tes K, Bakala N’Goma JC, Dhouib R et al (2008) Lipolytic enzymes in Mycobacterium tuberculosis. Appl Microbiol Biotechnol 78:741–749. doi:10.1007/s00253-008-1397-2

    PubMed  Google Scholar 

  • Dandekar T, Astrid F, Jasmin P, Hensel M (2012) Salmonella enterica: a surprisingly well-adapted intracellular lifestyle. Front Microbiol 3:164. doi:10.3389/fmicb.2012.00164

    PubMed  CAS  Google Scholar 

  • Daniel J, Deb C, Dubey VS et al (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030. doi:10.1128/JB.186.15.5017-5030.2004

    PubMed  CAS  Google Scholar 

  • Daniel J, Maamar H, Deb C et al (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7:e1002093. doi:10.1371/journal.ppat.1002093.t003

    PubMed  CAS  Google Scholar 

  • de Carvalho LPS, Fischer SM, Marrero J et al (2010a) Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17:1122–1131. doi:10.1016/j.chembiol.2010.08.009

    PubMed  Google Scholar 

  • de Carvalho LPS, Zhao H, Dickinson CE et al (2010b) Activity-based metabolomic profiling of enzymatic function: identification of Rv1248c as a mycobacterial 2-Hydroxy-3-oxoadipate synthase. Chem Biol 17:323–332. doi:10.1016/j.chembiol.2010.03.009

    PubMed  Google Scholar 

  • De Smet KA, Weston A, Brown IN et al (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146(Pt 1):199–208

    PubMed  Google Scholar 

  • Deb C, Daniel J, Sirakova TD et al (2006) A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem 281:3866–3875. doi:10.1074/jbc.M505556200

    PubMed  CAS  Google Scholar 

  • Dedieu L, Serveau-Avesque C, Kremer L, Canaan S (2012) Mycobacterial lipolytic enzymes: a gold mine for tuberculosis research. Biochimie 95(1):66–73. doi:10.1016/j.biochi.2012.07.008 (in press)

    Google Scholar 

  • Dubos R (1947) Media for tubercle bacilli. Am Rev Tuberc 56:334–345

    PubMed  CAS  Google Scholar 

  • Edson NL (1951) The intermediary metabolism of the mycobacteria. Bacteriol Rev 15:147–182

    PubMed  CAS  Google Scholar 

  • Eisenreich W, Dandekar T, Heesemann J, Goebel W (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Micro 8:401–412

    CAS  Google Scholar 

  • Eisenreich W, Slaghuis J, Laupitz R et al (2006) 13C isotopologue perturbation studies of Listeria monocytogenes carbon metabolism and its modulation by the virulence regulator PrfA. Proc Natl Acad Sci USA 103:2040–2045. doi:10.1073/pnas.0507580103

    PubMed  CAS  Google Scholar 

  • Elkington PT, D’Armiento JM, Friedland JS (2011) Tuberculosis immunopathology: the neglected role of extracellular matrix destruction. Sci Transl Med 3:71ps6. doi:10.1126/scitranslmed.3001847

  • Eum S-Y, Kong J-H, Hong M-S et al (2010) Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137:122–128. doi:10.1378/chest.09-0903

    PubMed  Google Scholar 

  • Eylert E, Herrmann V, Jules M et al (2010) Isotopologue Profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 285:22232–22243. doi:10.1074/jbc.M110.128678

    PubMed  CAS  Google Scholar 

  • Flynn JL (2006) Lessons from experimental Mycobacterium tuberculosis infections. Microbes Inf 8:1179–1188. doi:10.1016/j.micinf.2005.10.033

    CAS  Google Scholar 

  • Fratazzi C, Arbeit RD, Carini C et al (1999) Macrophage apoptosis in mycobacterial infections. J Leukoc Biol 66:763–764

    PubMed  CAS  Google Scholar 

  • Fuchs T, Eisenreich W, Heesemann J, Goebel W (2011) Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra-and intracellular habitats. FEMS Microbiol Rev 36:435–462. doi:10.1111/j.1574-6976.2011.00301.x

    PubMed  Google Scholar 

  • Fuchs TM, Eisenreich W, Kern T, Dandekar T (2012) Toward a systemic understanding of Listeria monocytogenes metabolism during infection. Front Microbiol. doi:10.1186/1471-2105-11-77

    Google Scholar 

  • Gandotra S, Lebron MB, Ehrt S (2010) The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog 6:e1001040. doi:10.1371/journal.ppat.1001040

    PubMed  Google Scholar 

  • Garton NJ, Christensen H, Minnikin DE et al (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148:2951–2958

    PubMed  CAS  Google Scholar 

  • Garton NJ, Waddell SJ, Sherratt AL et al (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5:e75. doi:10.1371/journal.pmed.0050075

    PubMed  Google Scholar 

  • George J, Pine L, Reeves M, Harrell WK (1980) Amino acid requirements of Legionella pneumophila. J Clin Microbiol 11:286–291

    PubMed  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35. doi:10.1038/nri978

    PubMed  CAS  Google Scholar 

  • Görke B, StĂĽlke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Micro 6:613–624. doi:10.1038/nrmicro1932

    Google Scholar 

  • Götz A, Goebel W (2010) Glucose and glucose 6-phosphate as carbon sources in extra-and intracellular growth of enteroinvasive Escherichia coli and Salmonella enterica. Microbiology 156:1176

    PubMed  Google Scholar 

  • Griffin JE, Gawronski JD, Dejesus MA et al (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251. doi:10.1371/journal.ppat.1002251

    PubMed  CAS  Google Scholar 

  • Griffin JE, Pandey AK, Gilmore SA et al (2012) Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19:218–227. doi:10.1016/j.chembiol.2011.12.016

    PubMed  CAS  Google Scholar 

  • Gutierrez M, Master S, Singh S et al (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    PubMed  CAS  Google Scholar 

  • Hasan MR, Rahman M, Jaques S et al (2010) Glucose 6-phosphate accumulation in mycobacteria: implications for a novel F420-dependent anti-oxidant defense system. J Biol Chem 285:19135–19144. doi:10.1074/jbc.M109.074310

    PubMed  CAS  Google Scholar 

  • Houben D, Demangel C, van Ingen J et al (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14:1287–1298. doi:10.1111/j.1462-5822.2012.01799.x

    PubMed  CAS  Google Scholar 

  • Hu Y, van der Geize R, Besra GS et al (2010) 3-Ketosteroid 9Π± -hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 75:107–121. doi:10.1111/j.1365-2958.2009.06957.x

    PubMed  CAS  Google Scholar 

  • Jackson M, Stadthagen G, Gicquel B (2007) Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis 87:78–86. doi:10.1016/j.tube.2006.05.003

    PubMed  CAS  Google Scholar 

  • James PE, Grinberg OY, Michaels G, Swartz HM (1995) Intraphagosomal oxygen in stimulated macrophages. J Cell Physiol 163:241–247. doi:10.1002/jcp.1041630204

    PubMed  CAS  Google Scholar 

  • Kalscheuer R, Weinrick B, Veeraraghavan U et al (2010) Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci 107:21761–21766. doi:10.1073/pnas.1014642108

    PubMed  CAS  Google Scholar 

  • Kaplan G, Post FA, Moreira AL et al (2003) Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Inf Immun 71:7099–7108. doi:10.1128/IAI.71.12.7099-7108.2003

    CAS  Google Scholar 

  • Kim BH, Shenoy AR, Kumar P et al (2011) A family of IFN- -Inducible 65-kD GTPases protects against bacterial infection. Science 332:717–721. doi:10.1126/science.1201711

    PubMed  CAS  Google Scholar 

  • Kim M-J, Wainwright HC, Locketz M et al (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2:258–274. doi:10.1002/emmm.201000079

    PubMed  CAS  Google Scholar 

  • Larson TJ, Ehrmann M, Boos W (1983) Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem 258:5428–5432

    PubMed  CAS  Google Scholar 

  • Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344. doi:10.1126/science.1193494

    PubMed  CAS  Google Scholar 

  • MacMicking JD (2003) Immune control of tuberculosis by IFN-Îł-Inducible LRG-47. Science 302:654–659. doi:10.1126/science.1088063

    PubMed  CAS  Google Scholar 

  • MacMicking JD, North RJ, LaCourse R et al (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94:5243–5248

    PubMed  CAS  Google Scholar 

  • Marrero J, Rhee KY, Schnappinger D et al (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci 107:9819–9824. doi:10.1073/pnas.1000715107

    PubMed  CAS  Google Scholar 

  • McKinney J, zu Bentrup K, Muñoz-ElĂ­as E et al (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738

    PubMed  CAS  Google Scholar 

  • Melo RCN, Dvorak AM (2012) Lipid body–phagosome interaction in macrophages during infectious diseases: host defense or pathogen survival strategy? PLoS Pathog 8:e1002729. doi:10.1371/journal.ppat.1002729.t001

    PubMed  CAS  Google Scholar 

  • McMurray DN, Collins FM, Dannenberg AMJ, Smith DW (1996) Pathogenesis of experimental tuberculosis in animal models. Curr Top Microbiol Immunol 215:157–179

    PubMed  CAS  Google Scholar 

  • Mishra AK, Driessen NN, Appelmelk BJ, Besra GS (2011) Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev 35:1126–1157. doi:10.1111/j.1574-6976.2011.00276.x

    PubMed  CAS  Google Scholar 

  • Mishra KC, De Chastellier C, Narayana Y et al (2007) Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY. Inf Immun 76:127–140. doi:10.1128/IAI.00410-07

    Google Scholar 

  • Mori M, Gotoh T (2004) Arginine metabolic enzymes, nitric oxide and infection. J Nutr 134:2820S–2825S

    PubMed  CAS  Google Scholar 

  • Mukamolova GV, Turapov O, Malkin J et al (2010) Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am J Respir Crit Care Med 181:174–180. doi:10.1164/rccm.200905-0661OC

    PubMed  CAS  Google Scholar 

  • Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    PubMed  CAS  Google Scholar 

  • Muñoz ElĂ­as E, Upton A, Cherian J, McKinney J (2006) Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60:1109–1122

    PubMed  Google Scholar 

  • Muñoz-ElĂ­as E, McKinney J (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644

    PubMed  Google Scholar 

  • Murthy PS, Sirsi M, Ramakrishnan T (1962) Tricarboxylic acid cycle and related enzymes in cell-free extracts of Mycobacterium tuberculosis H37Rv. Biochem J 84:263

    PubMed  CAS  Google Scholar 

  • Naderer T, McConville MJ (2007) The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol 10:301–308. doi:10.1111/j.1462-5822.2007.01096.x

    PubMed  Google Scholar 

  • Nathan C (2009) Taming tuberculosis: a challenge for science and society. Cell Host Microbe 5:220–224. doi:10.1016/j.chom.2009.02.004

    PubMed  CAS  Google Scholar 

  • Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848

    PubMed  CAS  Google Scholar 

  • Nesbitt NM, Yang X, Fontan P et al (2009) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Inf Immun 78:275–282. doi:10.1128/IAI.00893-09

    Google Scholar 

  • Newton HJ, Ang DKY, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by legionella pneumophila. Clin Microbiol Rev 23:274–298. doi:10.1128/CMR.00052-09

    PubMed  CAS  Google Scholar 

  • Neyrolles O, Guilhot C (2011) Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis 91:187–195. doi:10.1016/j.tube.2011.01.002

    PubMed  CAS  Google Scholar 

  • Neyrolles O, Hernández-Pando R, Pietri-Rouxel F et al (2006) Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One 1:e43. doi:10.1371/journal.pone.0000043.t002

    PubMed  Google Scholar 

  • Nicholson TL, Chiu K, Stephens RS (2004) Chlamydia trachomatis lacks an adaptive response to changes in carbon source availability. Inf Immun 72:4286–4289. doi:10.1128/IAI.72.7.4286-4289.2004

    CAS  Google Scholar 

  • Niederweis M (2008) Nutrient acquisition by mycobacteria. Microbiology 154:679–692. doi:10.1099/mic.0.2007/012872-0

    PubMed  CAS  Google Scholar 

  • Niederweis M, Danilchanka O, Huff J et al (2010) Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18:109–116. doi:10.1016/j.tim.2009.12.005

    PubMed  CAS  Google Scholar 

  • Nishihara H (1954) Studies on the metabolism of the tubercle bacillus with the use of radioactive substrates in the presence and absence of streptomycin. J Biochem 41:167–181

    CAS  Google Scholar 

  • Pandey A, Sassetti C (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci 105:4376

    PubMed  CAS  Google Scholar 

  • Paterson GK, Cone DB, Northen H et al (2009) Deletion of the gene encoding the glycolytic enzyme triosephosphate isomerase (tpi) alters morphology of Salmonella entericaserovar Typhimurium and decreases fitness in mice. FEMS Microbiol Lett 294:45–51. doi:10.1111/j.1574-6968.2009.01553.x

    PubMed  CAS  Google Scholar 

  • Pethe K, Sequeira PC, Agarwalla S et al (2010) A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature Commun 1:1–8. doi:10.1038/ncomms1060

    Google Scholar 

  • Peyron P, Vaubourgeix J, Poquet Y et al (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4:e1000204. doi:10.1371/journal.ppat.1000204.t003

    PubMed  Google Scholar 

  • Philips JA, Ernst JD (2012) Tuberculosis pathogenesis and immunity. Annu Rev Pathol Mech Dis 7:353–384. doi:10.1146/annurev-pathol-011811-132458

    CAS  Google Scholar 

  • Price CTD, Al-Quadan T, Santic M et al (2011) Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334:1553–1557. doi:10.1126/science.1212868

    PubMed  CAS  Google Scholar 

  • Purdy GE, Russell DG (2007) Lysosomal ubiquitin and the demise of Mycobacterium tuberculosis. Cell Microbiol 9:2768–2774. doi:10.1111/j.1462-5822.2007.01039.x

    PubMed  CAS  Google Scholar 

  • Raynaud C, Guilhot C, Rauzier J et al (2002) Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 45:203–217

    PubMed  CAS  Google Scholar 

  • Rhee KY, de Carvalho LPS, Bryk R et al (2011) Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19:307–314. doi:10.1016/j.tim.2011.03.008

    PubMed  CAS  Google Scholar 

  • Rhoades ER, Frank AA, Orme IM (1997) Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber Lung Dis 78:57–66

    PubMed  CAS  Google Scholar 

  • Rich AR (1946) The pathogenesis of tuberculosis, 2nd ed. Charles C Thomas, Publisher, Springfied, III, Illinois

    Google Scholar 

  • Rieder HL (1999) Epidemiologic basis of tuberculosis control 1–162 In: international union against tuberculosis and lung disease (IUATLD)

    Google Scholar 

  • Rohde K, Yates RM, Purdy GE, Russell DG (2007) Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 219:37–54. doi:10.1111/j.1600-065X.2007.00547.x

    PubMed  CAS  Google Scholar 

  • Roy S, Sharma S, Sharma M et al (2004) Induction of nitric oxide release from the human alveolar epithelial cell line A549: an in vitro correlate of innate immune response to Mycobacterium tuberculosis. Immunology 112:471–480. doi:10.1046/j.1365-2567.2004.01905.x

    PubMed  CAS  Google Scholar 

  • Russell D, Barry C, Flynn J (2010) Tuberculosis: what we don’t know can, and does, hurt us. Science 328:852

    PubMed  CAS  Google Scholar 

  • Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577. doi:10.1038/35085034

    PubMed  CAS  Google Scholar 

  • Russell DG (2006) Who puts the tubercle in tuberculosis? Nat Rev Micro 5:39–47. doi:10.1038/nrmicro1538

    Google Scholar 

  • Russell DG, Cardona P-J, Kim M-J et al (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10:943–948. doi:10.1038/ni.1781

    PubMed  CAS  Google Scholar 

  • Sacks D, Anderson C (2004) Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol Rev 201:225–238. doi:10.1111/j.0105-2896.2004.00185.x

    PubMed  CAS  Google Scholar 

  • Sakula A (1983) Robert Koch: Centenary of the discovery of the tubercle bacillus, 1882. Can Vet J 24:127–131

    PubMed  CAS  Google Scholar 

  • Sambandamurthy VK, Wang X, Chen B et al (2002) A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 8:1171–1174. doi:10.1038/nm765

    PubMed  CAS  Google Scholar 

  • Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98:12712–12717. doi:10.1073/pnas.231275498

    PubMed  CAS  Google Scholar 

  • Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994. doi:10.1073/pnas.2134250100

    PubMed  CAS  Google Scholar 

  • Sauer J-D, Bachman MA, Swanson MS (2005) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci USA 102:9924–9929. doi:10.1073/pnas.0502767102

    PubMed  CAS  Google Scholar 

  • Savvi S, Warner DF, Kana BD et al (2008) Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190:3886–3895. doi:10.1128/JB.01767-07

    PubMed  CAS  Google Scholar 

  • Schaechter M, Maaløe O, Kjeldgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol 19:592–606. doi:10.1099/00221287-19-3-592

    PubMed  CAS  Google Scholar 

  • Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160:1290–1296

    PubMed  CAS  Google Scholar 

  • Schar J, Stoll R, Schauer K et al (2010) Pyruvate carboxylase plays a crucial role in carbon metabolism of extra- and intracellularly replicating Listeria monocytogenes. J Bacteriol 192:1774–1784. doi:10.1128/JB.01132-09

    PubMed  Google Scholar 

  • Schnappinger D, Ehrt S, Voskuil MI et al (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704. doi:10.1084/jem.20030846

    PubMed  CAS  Google Scholar 

  • Schwoppe C, Winkler HH, Neuhaus HE (2002) Properties of the Glucose-6-Phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J Bacteriol 184:2108–2115. doi:10.1128/JB.184.8.2108-2115.2002

    PubMed  CAS  Google Scholar 

  • Shenoy AR, Wellington DA, Kumar P et al (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336:481–485. doi:10.1126/science.1217141

    PubMed  CAS  Google Scholar 

  • Singh G, Singh G, Jadeja D, Kaur J (2010) Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosisas a model system. Crit Rev Microbiol 36:259–269. doi:10.3109/1040841X.2010.482923

    PubMed  CAS  Google Scholar 

  • Stoll R, Goebel W (2010) The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth. Microbiology 156:1069–1083. doi:10.1099/mic.0.034934-0

    PubMed  CAS  Google Scholar 

  • Sturgill-Koszycki S, Schlesinger PH, Chakraborty P et al (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681

    PubMed  CAS  Google Scholar 

  • Tchawa Yimga M, Leatham MP, Allen JH et al (2006) Role of Gluconeogenesis and the Tricarboxylic Acid Cycle in the Virulence of Salmonella enterica Serovar Typhimurium in BALB/c Mice. Inf Immun 74:1130–1140. doi:10.1128/IAI.74.2.1130-1140.2006

    Google Scholar 

  • Tian J, Bryk R, Itoh M et al (2005a) Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: Identification of α-ketoglutarate decarboxylase. Proc Natl Acad Sci USA 102:10670

    PubMed  CAS  Google Scholar 

  • Tian J, Bryk R, Shi S et al (2005b) Mycobacterium tuberculosis appears to lack α-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57:859–868. doi:10.1111/j.1365-2958.2005.04741.x

    PubMed  CAS  Google Scholar 

  • Timm J, Post FA, Bekker L-G et al (2003) Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 100:14321–14326. doi:10.1073/pnas.2436197100

    PubMed  CAS  Google Scholar 

  • Titgemeyer F, Amon J, Parche S et al (2007) A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol 189:5903

    PubMed  CAS  Google Scholar 

  • Torrelles JB, Schlesinger LS (2010) Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis 90:84–93. doi:10.1016/j.tube.2010.02.003

    PubMed  CAS  Google Scholar 

  • Tsai MC, Chakravarty S, Zhu G et al (2006) Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8:218–232. doi:10.1111/j.1462-5822.2005.00612.x

    PubMed  CAS  Google Scholar 

  • Upton A, McKinney J (2007) Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis. Microbiology 153:3973

    PubMed  CAS  Google Scholar 

  • van der Geize R, Yam K, Heuser T et al (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104:1947–1952. doi:10.1073/pnas.0605728104

    PubMed  Google Scholar 

  • van der Wel N, Hava D, Houben D et al (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298. doi:10.1016/j.cell.2007.05.059

    PubMed  Google Scholar 

  • Vandal OH, Pierini LM, Schnappinger D et al (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14:849–854. doi:10.1038/nm.1795

    PubMed  CAS  Google Scholar 

  • Venugopal A, Bryk R, Shi S et al (2011) Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 9:21–31. doi:10.1016/j.chom.2010.12.004

    PubMed  CAS  Google Scholar 

  • Via LE, Lin PL, Ray SM et al (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Inf Immun 76:2333–2340. doi:10.1128/IAI.01515-07

    CAS  Google Scholar 

  • Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366:689–704. doi:10.1042/BJ20020691

    PubMed  CAS  Google Scholar 

  • Vogt G, Nathan C (2011) In vitro differentiation of human macrophages with enhanced antimycobacterial activity. J Clin Investig 121:3889–3901. doi:10.1172/JCI57235

    PubMed  CAS  Google Scholar 

  • Voskuil MI, Schnappinger D, Visconti KC et al (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713. doi:10.1084/jem.20030205

    PubMed  CAS  Google Scholar 

  • Wagner T, Bellinzoni M, Wehenkel A et al (2011) Functional plasticity and allosteric regulation of α-ketoglutarate decarboxylase in central mycobacterial metabolism. Chem Biol 18:1011–1020. doi:10.1016/j.chembiol.2011.06.004

    PubMed  CAS  Google Scholar 

  • Watanabe S, Zimmermann M, Goodwin MB et al (2011) Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7:e1002287. doi:10.1371/journal.ppat.1002287

    PubMed  CAS  Google Scholar 

  • Weart RB, Lee AH, Chien A-C et al (2007) A metabolic sensor governing cell size in bacteria. Cell 130:335–347. doi:10.1016/j.cell.2007.05.043

    PubMed  CAS  Google Scholar 

  • Wheeler P, Blanchard J (2005) General Metabolism and biochemical pathways of tubercle bacilli. In: Cole ST, Eisenach KD, McMurray DN, Jacobs WR Jr (ed) Tuberculosis and the tubercle bacillus. ASM Press, Washington DC

    Google Scholar 

  • Wieland H, Ullrich S, Lang F, Neumeister B (2005) Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol 55:1528–1537. doi:10.1111/j.1365-2958.2005.04490.x

    PubMed  CAS  Google Scholar 

  • Wolf AJ, Linas B, Trevejo-Nuñez GJ et al (2007) Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 179:2509–2519

    PubMed  CAS  Google Scholar 

  • Yam KC, D’angelo I, Kalscheuer R et al (2009) Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5:e1000344. doi:10.1371/journal.ppat.1000344.t003

    PubMed  Google Scholar 

  • Yang X, Gao J, Smith I et al (2011) Cholesterol is not an essential source of nutrition for Mycobacterium tuberculosis during infection. J Bacteriol 193:1473–1476. doi:10.1128/JB.01210-10

    PubMed  CAS  Google Scholar 

  • Yang X, Nesbitt NM, Dubnau E et al (2009) Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 48:3819–3821. doi:10.1021/bi9005418

    PubMed  CAS  Google Scholar 

  • Youmans GP (1979) Tuberculosis. W.B. Saunders Company, Philadelphia

    Google Scholar 

  • Yuan Y, Li P, Ye J (2012) Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3:173–181. doi:10.1007/s13238-012-2025-6

    PubMed  CAS  Google Scholar 

  • Zhang X, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76:2397–2401. doi:10.1128/AEM.02902-09

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Werner Goebel for critical reading of the manuscript, insightful comments, and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Ehrt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehrt, S., Rhee, K. (2012). Mycobacterium Tuberculosis Metabolism and Host Interaction: Mysteries and Paradoxes. In: Pieters, J., McKinney, J. (eds) Pathogenesis of Mycobacterium tuberculosis and its Interaction with the Host Organism. Current Topics in Microbiology and Immunology, vol 374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_299

Download citation

Publish with us

Policies and ethics