Skip to main content

Olfactory Dysfunction in Schizophrenia: Evaluating Olfactory Abilities Across Species

  • Chapter
  • First Online:
Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework

Abstract

Though understudied relative to perturbations in the auditory and visual domains, olfactory dysfunction is a common symptom of schizophrenia. Over the past two decades, the availability of standardized assessments to quantify human olfactory abilities, and enhance understanding of the neurophysiology supporting olfaction, has increased, enabling a more thorough characterization of these deficits. In contrast to other psychiatric conditions for which olfactory dysfunction has been observed (e.g., major depressive disorder, bipolar disorder, Alzheimer’s disease), the impairments observed in schizophrenia are particularly global and profound. At this level, such deficits in olfactory abilities likely impact the enjoyment of food, detection of environmental hazards, and influence social relationships. More broadly, the study of olfactory phenotypes in schizophrenia presents new avenues for detection of those at-risk for the condition, identification of therapeutic targets for treatment development, and for the characterization of novel animal models relevant to schizophrenia and psychosis. This review will consider the olfactory performance of individuals with schizophrenia in domains for which standardized assessments are available (odor sensitivity, discrimination, identification, and memory). Paradigms available for assessing these abilities in rodents will also be discussed with the aim of facilitating translation. Thus, future studies will be able to include cross-species translation of mechanisms relevant to olfactory function and cognition, what has gone awry in the disease state, and test potential therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguillon-Hernandez N et al (2015) An odor identification approach based on event-related pupil dilation and gaze focus. Int J Psychophysiol 96(3):201–209

    Article  PubMed  Google Scholar 

  • April LB, Bruce K, Galizio M (2013) The magic number 70 (plus or minus 20): variables determining performance in the rodent odor span task. Learn Motiv 44(3):143–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Besser G et al (2019) The Sniffin' sticks odor discrimination memory test: a rapid, easy-to-use, reusable procedure for testing olfactory memory. Ann Otol Rhinol Laryngol 128(3):227–232

    Article  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20(11):4320–4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blount A, Coppola DM (2020) The effect of odor enrichment on olfactory acuity: olfactometric testing in mice using two mirror-molecular pairs. PLoS One 15(7):e0233250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodyak N, Slotnick B (1999) Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. Chem Senses 24(6):637–645

    Article  CAS  PubMed  Google Scholar 

  • Brewer WJ et al (2001) Stability of olfactory identification deficits in neuroleptic-naive patients with first-episode psychosis. Am J Psychiatry 158(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Bromberg W, Schilder P (1934) Olfactory imagination and olfactory hallucinations: an experimental and clinical study of the sense of smell in normal and in psychotic persons. Arch Neurol Psychiatry 32(3):467–492

    Article  Google Scholar 

  • Bruce K et al (2018) Successive odor matching- and non-matching-to-sample in rats: a reversal design. Behav Processes 155:26–32

    Article  PubMed  Google Scholar 

  • Chen X et al (2018) Olfactory impairment in first-episode schizophrenia: a case-control study, and sex dimorphism in the relationship between olfactory impairment and psychotic symptoms. BMC Psychiatry 18(1):199

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhury ES, Moberg P, Doty RL (2003) Influences of age and sex on a microencapsulated odor memory test. Chem Senses 28(9):799–805

    Article  PubMed  Google Scholar 

  • Cohen AS, Brown LA, Auster TL (2012) Olfaction, “olfiction,” and the schizophrenia-spectrum: an updated meta-analysis on identification and acuity. Schizophr Res 135(1):152–157

    Article  PubMed  Google Scholar 

  • Croy I, Nordin S, Hummel T (2014) Olfactory disorders and quality of life – an updated review. Chem Senses 39(3):185–194

    Article  PubMed  Google Scholar 

  • Croy I et al (2015) Test-retest reliability and validity of the Sniffin' TOM odor memory test. Chem Senses 40(3):173–179

    Article  PubMed  Google Scholar 

  • Crystal JD (2010) Episodic-like memory in animals. Behav Brain Res 215(2):235–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Y et al (2011) Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice. PLoS One 6(5):e20312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies DA, Greba Q, Howland JG (2013) GluN2B-containing NMDA receptors and AMPA receptors in medial prefrontal cortex are necessary for odor span in rats. Front Behav Neurosci 7:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies DA et al (2017) Interactions between medial prefrontal cortex and dorsomedial striatum are necessary for odor span capacity in rats: role of GluN2B-containing NMDA receptors. Learn Mem 24(10):524–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devanand DP et al (2008) Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer’s disease. Biol Psychiatry 64(10):871–879

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinc AS et al (2020) Smoking cessation improves olfactory functions. Laryngoscope 130(2):E35–E38

    Article  PubMed  Google Scholar 

  • Doty RL (1986) Odor-guided behavior in mammals. Experientia 42(3):257–271

    Article  CAS  PubMed  Google Scholar 

  • Doty RL, Ferguson-Segall M (1987) Odor detection performance of rats following d-amphetamine treatment: a signal detection analysis. Psychopharmacology (Berl) 93(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Doty R, Kamath V (2014) The influences of age on olfaction: a review. Front Psychol 5(20)

    Google Scholar 

  • Doty RL, Risser JM (1989) Influence of the D-2 dopamine receptor agonist quinpirole on the odor detection performance of rats before and after spiperone administration. Psychopharmacology (Berl) 98(3):310–315

    Article  CAS  PubMed  Google Scholar 

  • Doty RL et al (1984) University of Pennsylvania smell identification test: a rapid quantitative olfactory function test for the clinic. Laryngoscope 94(2 Pt 1):176–178

    Article  CAS  PubMed  Google Scholar 

  • Doty RL, Gregor TP, Settle RG (1986) Influence of intertrial interval and sniff-bottle volume on phenyl ethyl alcohol odor detection thresholds. Chem Senses 11(2):259–264

    Article  CAS  Google Scholar 

  • Doty RL et al (1994) Tests of human olfactory function: principal components analysis suggests that most measure a common source of variance. Percept Psychophys 56(6):701–707

    Article  CAS  PubMed  Google Scholar 

  • Dudchenko PA, Wood ER, Eichenbaum H (2000) Neurotoxic hippocampal lesions have no effect on odor span and little effect on odor recognition memory but produce significant impairments on spatial span, recognition, and alternation. J Neurosci 20(8):2964–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudchenko PA et al (2013) Animal models of working memory: a review of tasks that might be used in screening drug treatments for the memory impairments found in schizophrenia. Neurosci Biobehav Rev 37(9, Part B):2111–2124

    Article  PubMed  Google Scholar 

  • Duffy VB et al (2019) Heightened olfactory dysfunction and oral irritation among chronic smokers and heightened propylthiouracil (PROP) bitterness among menthol smokers. Physiol Behav 201:111–122

    Article  CAS  PubMed  Google Scholar 

  • Forte FS (1952) Olfactory hallucinations as a proctologic manifestation of early schizophrenia. Am J Surg 84(5):620–622

    Article  CAS  PubMed  Google Scholar 

  • Galizio M et al (2013) Working memory in the odor span task: effects of chlordiazepoxide, dizocilpine (MK801), morphine, and scopolamine. Psychopharmacology (Berl) 225(2):397–406

    CAS  PubMed  Google Scholar 

  • Galizio M et al (2016) Behavioral pharmacology of the odor span task: effects of flunitrazepam, ketamine, methamphetamine and methylphenidate. J Exp Anal Behav 106(3):173–194

    Article  PubMed  Google Scholar 

  • Galizio M et al (2019) Effects of NMDA antagonist dizocilpine (MK-801) are modulated by the number of distractor stimuli in the rodent odor span task of working memory. Neurobiol Learn Mem 161:51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamble KR, Smith DW (2009) Discrimination of “odorless” mineral oils alone and as diluents by behaviorally trained mice. Chem Senses 34(7):559–563

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA et al (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156(2):117–154

    Article  CAS  PubMed  Google Scholar 

  • Glennon SG et al (2019) Chronic cigarette smoking associates directly and indirectly with self-reported olfactory alterations: analysis of the 2011-2014 National Health and Nutrition Examination Survey. Nicotine Tob Res 21(6):818–827

    Article  PubMed  Google Scholar 

  • Grayton HM et al (2013) Altered social behaviours in neurexin 1alpha knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS One 8(6):e67114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X et al (2009) Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of schizophrenia. Neuropsychopharmacology 34(7):1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Hayes JE, Jinks AL (2012) Evaluation of smoking on olfactory thresholds of phenyl ethyl alcohol and n-butanol. Physiol Behav 107(2):177–180

    Article  CAS  PubMed  Google Scholar 

  • Hikida T et al (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci 104(36):14501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummel T et al (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264(3):237–243

    Article  CAS  PubMed  Google Scholar 

  • Kamath V et al (2018) Olfactory processing in bipolar disorder, major depression, and anxiety. Bipolar Disord 20(6):547–555

    Article  PubMed  Google Scholar 

  • Kamath V et al (2019) Contributions of olfactory and neuropsychological assessment to the diagnosis of first-episode schizophrenia. Neuropsychology 33(2):203–211

    Article  PubMed  Google Scholar 

  • Kamrava SK et al (2020) Validity and reliability of Persian smell identification test. Iran J Otorhinolaryngol 32(109):65–71

    PubMed  PubMed Central  Google Scholar 

  • Karlsson R-M et al (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34(6):1578–1589

    Article  CAS  PubMed  Google Scholar 

  • Katotomichelakis M et al (2007) The effect of smoking on the olfactory function. Rhinology 45(4):273–280

    PubMed  Google Scholar 

  • Kayser J et al (2013) Olfaction in the psychosis prodrome: electrophysiological and behavioral measures of odor detection. Int J Psychophysiol 90(2):190–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Kesner RP, Hardy JD, Calder LD (1981) Phencyclidine and behavior: I. sensory-motor function, activity level, taste aversion and water intake. Pharmacol Biochem Behav 15(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Kobal G et al (1996) “Sniffin’ sticks”: screening of olfactory performance. Rhinology 34(4):222–226

    CAS  PubMed  Google Scholar 

  • Kohler CG et al (2001) Olfactory dysfunction in schizophrenia and temporal lobe epilepsy. Neuropsychiatry Neuropsychol Behav Neurol 14(2):83–88

    CAS  PubMed  Google Scholar 

  • Kopala LC, Good KP, Honer WG (1994) Olfactory hallucinations and olfactory identification ability in patients with schizophrenia and other psychiatric disorders. Schizophr Res 12(3):205–211

    Article  CAS  PubMed  Google Scholar 

  • Koster NL et al (1999) Olfactory receptor neurons express D2 dopamine receptors. J Comp Neurol 411(4):666–673

    Article  CAS  PubMed  Google Scholar 

  • Kraemer S, Apfelbach R (2004) Olfactory sensitivity, learning and cognition in young adult and aged male Wistar rats. Physiol Behav 81(3):435–442

    Article  CAS  PubMed  Google Scholar 

  • Labrie V, Lipina T, Roder JC (2008) Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology (Berl) 200(2):217–230

    Article  CAS  PubMed  Google Scholar 

  • Labrie V et al (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18(17):3227–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labrie V et al (2010) Genetic loss of D-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice. Genes Brain Behav 9(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • Lehrner JP, Glück J, Laska M (1999) Odor identification, consistency of label use, olfactory threshold and their relationships to odor memory over the human lifespan. Chem Senses 24(3):337–346

    Article  CAS  PubMed  Google Scholar 

  • Lett TA et al (2014) Treating working memory deficits in schizophrenia: a review of the neurobiology. Biol Psychiatry 75(5):361–370

    Article  PubMed  Google Scholar 

  • Levy DA et al (2003) Impaired visual and odor recognition memory span in patients with hippocampal lesions. Learn Mem 10(6):531–536

    Article  PubMed  PubMed Central  Google Scholar 

  • Li SB et al (2021) Odour identification impairment is a trait but not a disease-specific marker for bipolar disorders: comparisons of bipolar disorder with different episodes, major depressive disorder and schizophrenia. Aust N Z J Psychiatry:4867421998774

    Google Scholar 

  • Loren V, van Themaat AH et al (2020) Odor identification in 7-year-old children at familial high risk of schizophrenia or bipolar disorder – the Danish high risk and resilience study VIA 7. Schizophr Res 216:77–84

    Article  Google Scholar 

  • MacQueen DA, Drobes DJ (2017) Validation of the human odor span task: effects of nicotine. Psychopharmacology (Berl) 234(19):2871–2882

    Article  CAS  PubMed  Google Scholar 

  • MacQueen DA, Bullard L, Galizio M (2011) Effects of dizocilpine (MK801) on olfactory span in rats. Neurobiol Learn Mem 95(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • MacQueen DA et al (2016) Influence of pharmacological manipulations of NMDA and cholinergic receptors on working versus reference memory in a dual component odor span task. Learn Mem 23(6):270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaspina D et al (1994) Odor discrimination deficits in schizophrenia: association with eye movement dysfunction. J Neuropsychiatry Clin Neurosci 6(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Malaspina D et al (2012) Olfaction and cognition in schizophrenia: sex matters. J Neuropsychiatry Clin Neurosci 24(2):165–175

    Article  PubMed  Google Scholar 

  • Malaspina D et al (2016) Parental age effects on odor sensitivity in healthy subjects and schizophrenia patients. Am J Med Genet B Neuropsychiatr Genet 171(4):513–520

    Article  PubMed  Google Scholar 

  • Mathews MJ, Mead RN, Galizio M (2018) Effects of N-methyl-D-aspartate (NMDA) antagonists ketamine, methoxetamine, and phencyclidine on the odor span test of working memory in rats. Exp Clin Psychopharmacol 26(1):6–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath JJ et al (2003) The neurodevelopmental hypothesis of schizophrenia: a review of recent developments. Ann Med 35(2):86–93

    Article  PubMed  Google Scholar 

  • Miller G (2004) Nobel prizes. Axel, Buck share award for deciphering how the nose knows. Science 306(5694):207

    Article  CAS  PubMed  Google Scholar 

  • Moberg PJ et al (1997) Olfactory identification deficits in schizophrenia: correlation with duration of illness. Am J Psychiatry 154(7):1016–1018

    Article  CAS  PubMed  Google Scholar 

  • Moberg PJ et al (1999) Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacology 21(3):325–340

    Article  CAS  PubMed  Google Scholar 

  • Moberg PJ et al (2006) Olfactory functioning in schizophrenia: relationship to clinical, neuropsychological, and volumetric MRI measures. J Clin Exp Neuropsychol 28(8):1444–1461

    Article  PubMed  Google Scholar 

  • Moberg PJ et al (2014) Meta-analysis of olfactory function in schizophrenia, first-degree family members, and youths at-risk for psychosis. Schizophr Bull 40(1):50–59

    Article  PubMed  Google Scholar 

  • Moy SS et al (2009) Deficient NRG1-ERBB signaling alters social approach: relevance to genetic mouse models of schizophrenia. J Neurodev Disord 1(4):302–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee B, Yuan Q (2016) NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory. Sci Rep 6:35256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray BG et al (2017) Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring. Neurobiol Learn Mem 141:150–156

    Article  CAS  PubMed  Google Scholar 

  • O’Tuathaigh CMP et al (2007) Phenotypic characterization of spatial cognition and social behavior in mice with ‘knockout’ of the schizophrenia risk gene neuregulin 1. Neuroscience 147(1):18–27

    Article  PubMed  Google Scholar 

  • Ozmen S et al (2016) Olfactory and erectile dysfunction association in smoking and non-smoking men. Physiol Behav 160:1–5

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt MR et al (1998) Olfactory thresholds for nicotine and menthol in smokers (abstinent and nonabstinent) and nonsmokers. Physiol Behav 65(3):575–579

    Article  CAS  PubMed  Google Scholar 

  • Rubert SL, Hollender MH, Mehrhof EG (1961) Olfactory hallucinations. Arch Gen Psychiatry 5:313–318

    Article  CAS  PubMed  Google Scholar 

  • Rupp CI et al (2005) Olfactory functions and volumetric measures of orbitofrontal and limbic regions in schizophrenia. Schizophr Res 74(2–3):149–161

    Article  PubMed  Google Scholar 

  • Rushforth SL, Steckler T, Shoaib M (2011) Nicotine improves working memory span capacity in rats following sub-chronic ketamine exposure. Neuropsychopharmacology 36(13):2774–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan L et al (2018) Schizophrenia-like olfactory dysfunction induced by acute and postnatal phencyclidine exposure in rats. Schizophr Res 199:274–280

    Article  PubMed  Google Scholar 

  • Smith RS et al (1993) Smell and taste function in the visually impaired. Percept Psychophys 54(5):649–655

    Article  CAS  PubMed  Google Scholar 

  • Snyder MA, Gao WJ (2013) NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 7:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staubli U et al (1989) Antagonism of NMDA receptors impairs acquisition but not retention of olfactory memory. Behav Neurosci 103(1):54–60

    Article  CAS  PubMed  Google Scholar 

  • Su C-Y, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139(1):45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T et al (2018) Olfactory deficits in individuals at risk for psychosis and patients with schizophrenia: relationship with socio-cognitive functions and symptom severity. Eur Arch Psychiatry Clin Neurosci 268(7):689–698

    Article  PubMed  Google Scholar 

  • Tarland E, Brosda J (2018) Male rats treated with subchronic PCP show intact olfaction and enhanced interest for a social odour in the olfactory habituation/dishabituation test. Behav Brain Res 345:13–20

    Article  CAS  PubMed  Google Scholar 

  • Temmel AF et al (2002) Characteristics of olfactory disorders in relation to major causes of olfactory loss. Arch Otolaryngol Head Neck Surg 128(6):635–641

    Article  PubMed  Google Scholar 

  • Tillerson JL et al (2006) Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor. Behav Brain Res 172(1):97–105

    Article  CAS  PubMed  Google Scholar 

  • Tulving E (1983) Elements of episodic memory, Oxford psychology series. Oxford University Press, Oxford. xi, 351 p

    Google Scholar 

  • Ugur T et al (2005) Olfactory impairment in monozygotic twins discordant for schizophrenia. Eur Arch Psychiatry Clin Neurosci 255(2):94–98

    Article  PubMed  Google Scholar 

  • Wagner TJ, Bruce K, Galizio M (2022) Incrementing non-matching- but not matching-to-sample is rapidly learned in an automated version of the odor span task. Anim Cogn

    Google Scholar 

  • Wei CJ, Linster C, Cleland TA (2006) Dopamine D2 receptor activation modulates perceived odor intensity. Behav Neurosci 120(2):393–400

    Article  CAS  PubMed  Google Scholar 

  • Woodward MR et al (2017) Validation of olfactory deficit as a biomarker of Alzheimer disease. Neurol Clin Pract 7(1):5–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolley JD et al (2015) Oxytocin administration selectively improves olfactory detection thresholds for lyral in patients with schizophrenia. Psychoneuroendocrinology 53:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J et al (1993) Olfactory memory in unmedicated schizophrenics. Schizophr Res 9(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Crawley JN (2009) Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci 48(1):8.24.1–8.24.12

    Article  Google Scholar 

  • Young JW et al (2007) The odour span task: a novel paradigm for assessing working memory in mice. Neuropharmacology 52(2):634–645

    Article  CAS  PubMed  Google Scholar 

  • Young JW et al (2009) Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 122(2):150–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang X (2017) Initiation of the age-related decline of odor identification in humans: a meta-analysis. Ageing Res Rev 40:45–50

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. MacQueen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cothren, T.O., Evonko, C.J., MacQueen, D.A. (2022). Olfactory Dysfunction in Schizophrenia: Evaluating Olfactory Abilities Across Species. In: Barch, D.M., Young, J.W. (eds) Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework. Current Topics in Behavioral Neurosciences, vol 63. Springer, Cham. https://doi.org/10.1007/7854_2022_390

Download citation

Publish with us

Policies and ethics