Skip to main content

Neural Activity Patterns Underlying Spatial Coding in the Hippocampus

  • Chapter
Behavioral Neuroscience of Learning and Memory

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 37))

Abstract

The hippocampus is well known as a central site for memory processing—critical for storing and later retrieving the experiences events of daily life so they can be used to shape future behavior. Much of what we know about the physiology underlying hippocampal function comes from spatial navigation studies in rodents, which have allowed great strides in understanding how the hippocampus represents experience at the cellular level. However, it remains a challenge to reconcile our knowledge of spatial encoding in the hippocampus with its demonstrated role in memory-dependent tasks in both humans and other animals. Moreover, our understanding of how networks of neurons coordinate their activity within and across hippocampal subregions to enable the encoding, consolidation, and retrieval of memories is incomplete. In this chapter, we explore how information may be represented at the cellular level and processed via coordinated patterns of activity throughout the subregions of the hippocampal network.

Marielena Sosa, Anna K. Gillespie—These authors contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed OJ, Mehta MR (2009) The hippocampal rate code: anatomy, physiology and theory. Trends Neurosci 32(6):329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed OJ, Mehta MR (2012) Running speed alters the frequency of hippocampal gamma oscillations. J Neurosci 32(21):7373–7383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainge JA, Tamosiunaite M, Woergoetter F, Dudchenko PA (2007) Hippocampal CA1 place cells encode intended destination on a maze with multiple choice points. J Neurosci 27(36):9769–9779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander GM, Farris S, Pirone JR, Zheng C, Colgin LL, Dudek SM (2016) Social and novel contexts modify hippocampal CA2 representations of space. Nat Commun 7:10300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen K, Rawlins JN, Bannerman DM, Csicsvari J (2012) Hippocampal place cells can encode multiple trial-dependent features through rate remapping. J Neurosci 32(42):14752–14766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen TA, Salz DM, McKenzie S, Fortin NJ (2016) Nonspatial sequence coding in CA1 neurons. J Neurosci 36(5):1547–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral DG, Dolorfo C, Alvarez-Royo P (1991) Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus 1(4):415–435

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Prog Brain Res 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Kurz J (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240(1):37–59

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31(3):571–591

    Article  CAS  PubMed  Google Scholar 

  • Anderson MI, Jeffery KJ (2003) Heterogeneous modulation of place cell firing by changes in context. J Neurosci 23(26):8827–8835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnolds DE, Lopes da Silva FH, Aitink JW, Kamp A, Boeijinga P (1980) The spectral properties of hippocampal EEG related to behaviour in man. Electroencephalogr Clin Neurophysiol 50(3–4):324–328

    Article  CAS  PubMed  Google Scholar 

  • Axmacher N, Elger CE, Fell J (2008) Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain 131(Pt 7):1806–1817

    Article  PubMed  Google Scholar 

  • Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J (2010) Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci USA 107(7):3228–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axmacher N, Mormann F, Fernandez G, Elger CE, Fell J (2006) Memory formation by neuronal synchronization. Brain Res Rev 52(1):170–182

    Article  PubMed  Google Scholar 

  • Backus AR, Schoffelen JM, Szebenyi S, Hanslmayr S, Doeller CF (2016) Hippocampal-prefrontal theta oscillations support memory integration. Curr Biol 26(4):450–457

    Article  CAS  PubMed  Google Scholar 

  • Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev 28(3):273–283

    Article  CAS  PubMed  Google Scholar 

  • Bannerman DM, Yee BK, Good MA, Heupel MJ, Iversen SD, Rawlins JN (1999) Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav Neurosci 113(6):1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH (1990) Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog Brain Res 83:287–300

    Article  CAS  PubMed  Google Scholar 

  • Bartesaghi R, Gessi T (2004) Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys. Hippocampus 14(8):948–963

    Article  PubMed  Google Scholar 

  • Bast T (2007) Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behavior. Rev Neurosci 18(3–4):253–281

    PubMed  Google Scholar 

  • Bast T, Wilson IA, Witter MP, Morris RG (2009) From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. PLoS Biol 7(4):e1000089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Battaglia FP, Sutherland GR, McNaughton BL (2004a) Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11(6):697–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Battaglia FP, Sutherland GR, McNaughton BL (2004b) Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J Neurosci 24(19):4541–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckstead RM (1978) Afferent connections of the entorhinal area in the rat as demonstrated by retrograde cell-labeling with horseradish peroxidase. Brain Res 152(2):249–264

    Article  CAS  PubMed  Google Scholar 

  • Belchior H, Lopes-Dos-Santos V, Tort AB, Ribeiro S (2014) Increase in hippocampal theta oscillations during spatial decision making. Hippocampus 24(6):693–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsaki G (2012) Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32(2):423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66(6):921–936

    Article  CAS  PubMed  Google Scholar 

  • Bendor D, Wilson MA (2012) Biasing the content of hippocampal replay during sleep. Nat Neurosci 15(10):1439–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best PJ, Ranck JB Jr (1982) Reliability of the relationship between hippocampal unit activity and sensory-behavioral events in the rat. Exp Neurol 75(3):652–664

    Article  CAS  PubMed  Google Scholar 

  • Bibbig A, Faulkner HJ, Whittington MA, Traub RD (2001) Self-organized synaptic plasticity contributes to the shaping of gamma and beta oscillations in vitro. J Neurosci 21(22):9053–9067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC (2015) Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat Neurosci 18(8):1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohm C, Peng Y, Maier N, Winterer J, Poulet JF, Geiger JR, Schmitz D (2015) Functional diversity of subicular principal cells during hippocampal ripples. J Neurosci 35(40):13608–13618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, Roudi Y, Moser EI, Moser MB (2013) Grid cells require excitatory drive from the hippocampus. Nat Neurosci 16(3):309–317

    Article  CAS  PubMed  Google Scholar 

  • Bott JB, Muller MA, Jackson J, Aubert J, Cassel JC, Mathis C, Goutagny R (2015) Spatial reference memory is associated with modulation of theta-gamma coupling in the dentate gyrus. Cereb Cortex

    Google Scholar 

  • Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995a) Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15(1 Pt 1):47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bragin A, Jando G, Nadasdy Z, van Landeghem M, Buzsaki G (1995b) Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. J Neurophysiol 73(4):1691–1705

    Article  CAS  PubMed  Google Scholar 

  • Brandon MP, Koenig J, Leutgeb JK, Leutgeb S (2014) New and distinct hippocampal place codes are generated in a new environment during septal inactivation. Neuron 82(4):789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brankack J, Stewart M, Fox SE (1993) Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators. Brain Res 615(2):310–327

    Article  CAS  PubMed  Google Scholar 

  • Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76(4):790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338(2):255–278

    Article  CAS  PubMed  Google Scholar 

  • Brun VH, Leutgeb S, Wu HQ, Schwarcz R, Witter MP, Moser EI, Moser MB (2008a) Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron 57(2):290–302

    Article  CAS  PubMed  Google Scholar 

  • Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296(5576):2243–2246

    Article  CAS  PubMed  Google Scholar 

  • Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser MB (2008b) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18(12):1200–1212

    Article  PubMed  Google Scholar 

  • Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366(2):271–292

    Article  CAS  PubMed  Google Scholar 

  • Bullock TH, Buzsaki G, McClune MC (1990) Coherence of compound field potentials reveals discontinuities in the CA1-subiculum of the hippocampus in freely-moving rats. Neuroscience 38(3):609–619

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398(2):242–252

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31(3):551–570

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33(3):325–340

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (2015) Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G, Buhl DL, Harris KD, Csicsvari J, Czeh B, Morozov A (2003) Hippocampal network patterns of activity in the mouse. Neuroscience 116(1):201–211

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Czopf J, Kondakor I, Kellenyi L (1986) Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine. Brain Res 365(1):125–137

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256(5059):1025–1027

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287(2):139–171

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr MF, Jadhav SP, Frank LM (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14(2):147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr MF, Karlsson MP, Frank LM (2012) Transient slow gamma synchrony underlies hippocampal memory replay. Neuron 75(4):700–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N (2016) Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron

    Google Scholar 

  • Cenquizca LA, Swanson LW (2006) Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat. J Comp Neurol 497(1):101–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Cenquizca LA, Swanson LW (2007) Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev 56(1):1–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Resnik E, McFarland JM, Sakmann B, Mehta MR (2011) Speed controls the amplitude and timing of the hippocampal gamma rhythm. PLoS ONE 6(6):e21408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Frank LM (2008) New experiences enhance coordinated neural activity in the hippocampus. Neuron 57(2):303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevaleyre V, Siegelbaum SA (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66(4):560–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrobak JJ, Buzsaki G (1994) Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat. J Neurosci 14(10):6160–6170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chrobak JJ, Buzsaki G (1996) High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J Neurosci 16(9):3056–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciocchi S, Passecker J, Malagon-Vina H, Mikus N, Klausberger T (2015) Brain computation. Selective information routing by ventral hippocampal CA1 projection neurons. Science 348(6234):560–563

    Article  CAS  PubMed  Google Scholar 

  • Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colgin LL (2012) Slow gamma takes the reins in replay. Neuron 75(4):549–550

    Article  CAS  PubMed  Google Scholar 

  • Colgin LL (2015) Theta-gamma coupling in the entorhinal-hippocampal system. Curr Opin Neurobiol 31:45–50

    Article  CAS  PubMed  Google Scholar 

  • Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 19;462(7271):353–357

    Article  CAS  PubMed  Google Scholar 

  • Colgin LL, Leutgeb S, Jezek K, Leutgeb JK, Moser EI, McNaughton BL, Moser MB (2010) Attractor-map versus autoassociation based attractor dynamics in the hippocampal network. J Neurophysiol 104(1):35–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Cravens CJ, Vargas-Pinto N, Christian KM, Nakazawa K (2006) CA3 NMDA receptors are crucial for rapid and automatic representation of context memory. Eur J Neurosci 24(6):1771–1780

    Article  PubMed  Google Scholar 

  • Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ (2010) Running enhances spatial pattern separation in mice. Proc Natl Acad Sci USA 107(5):2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G (1999a) Fast network oscillations in the hippocampal CA1 region of the behaving rat. J Neurosci 19(16):RC20

    PubMed  PubMed Central  Google Scholar 

  • Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G (1999b) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19(1):274–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csicsvari J, Hirase H, Mamiya A, Buzsaki G (2000) Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28(2):585–594

    Article  CAS  PubMed  Google Scholar 

  • Csicsvari J, Jamieson B, Wise KD, Buzsaki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37(2):311–322

    Article  CAS  PubMed  Google Scholar 

  • Csicsvari J, O’Neill J, Allen K, Senior T (2007) Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration. Eur J Neurosci 26(3):704–716

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Gerfen CR, Young WS 3rd (2013) Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J Comp Neurol 521(8):1844–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutsuridis V, Taxidis J (2013) Deciphering the role of CA1 inhibitory circuits in sharp wave-ripple complexes. Front Syst Neurosci 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Danielson NB, Kaifosh P, Zaremba JD, Lovett-Barron M, Tsai J, Denny CA, Balough EM, Goldberg AR, Drew LJ, Hen R, Losonczy A, Kheirbek MA (2016) Distinct contribution of adult-born hippocampal granule cells to context encoding. Neuron

    Google Scholar 

  • Davidson TJ, Kloosterman F, Wilson MA (2009) Hippocampal replay of extended experience. Neuron 63(4):497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Hoz L, Knox J, Morris RG (2003) Longitudinal axis of the hippocampus: both septal and temporal poles of the hippocampus support water maze spatial learning depending on the training protocol. Hippocampus 13(5):587–603

    Article  PubMed  Google Scholar 

  • de Hoz L, Martin SJ (2014) Double dissociation between the contributions of the septal and temporal hippocampus to spatial learning: the role of prior experience. Hippocampus 24(8):990–1005

    Article  PubMed  Google Scholar 

  • de Lavilleon G, Lacroix MM, Rondi-Reig L, Benchenane K (2015) Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat Neurosci 18(4):493–495

    Article  PubMed  CAS  Google Scholar 

  • Deadwyler SA, Hampson RE (2004) Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron 42(3):465–476

    Article  CAS  PubMed  Google Scholar 

  • Deller T, Martinez A, Nitsch R, Frotscher M (1996) A novel entorhinal projection to the rat dentate gyrus: direct innervation of proximal dendrites and cell bodies of granule cells and GABAergic neurons. J Neurosci 16(10):3322–3333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SS, Knierim JJ (2011) Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front Behav Neurosci 5:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SS, Knierim JJ (2013) Influence of local objects on hippocampal representations: landmark vectors and memory. Hippocampus 23(4):253–267

    Article  PubMed  Google Scholar 

  • Deshmukh SS, Yoganarasimha D, Voicu H, Knierim JJ (2010) Theta modulation in the medial and the lateral entorhinal cortices. J Neurophysiol 104(2):994–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeVito LM, Konigsberg R, Lykken C, Sauvage M, Young WS 3rd, Eichenbaum H (2009) Vasopressin 1b receptor knock-out impairs memory for temporal order. J Neurosci 29(9):2676–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diba K, Buzsaki G (2007) Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 10(10):1241–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolleman-Van der Weel MJ, Witter MP (1996) Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 364(4):637–650

    Article  CAS  PubMed  Google Scholar 

  • Dong HW, Swanson LW, Chen L, Fanselow MS, Toga AW (2009) Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci USA 106(28):11794–11799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek SM, Alexander GM, Farris S (2016) Rediscovering area CA2: unique properties and functions. Nat Rev Neurosci 17(2):89–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan K, Ketz N, Inati SJ, Davachi L (2012) Evidence for area CA1 as a match/mismatch detector: a high-resolution fMRI study of the human hippocampus. Hippocampus 22(3):389–398

    Article  PubMed  Google Scholar 

  • Dupret D, O’Neill J, Pleydell-Bouverie B, Csicsvari J (2010) The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat Neurosci 13(8):995–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupret D, Revest JM, Koehl M, Ichas F, De Giorgi F, Costet P, Abrous DN, Piazza PV (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE 3(4):e1959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duvarci S, Pare D (2014) Amygdala microcircuits controlling learned fear. Neuron 82(5):966–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ego-Stengel V, Wilson MA (2007) Spatial selectivity and theta phase precession in CA1 interneurons. Hippocampus 17(2):161–174

    Article  PubMed  Google Scholar 

  • Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20(1):1–10

    PubMed  PubMed Central  Google Scholar 

  • Eichenbaum H (2014) Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci 15(11):732–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum H, Cohen NJ (2001) From conditioning to conscious recollection. Oxford University Press, New York

    Google Scholar 

  • Eichenbaum H, Cohen NJ (2014) Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 83(4):764–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum H, Kuperstein M, Fagan A, Nagode J (1987) Cue-sampling and goal-approach correlates of hippocampal unit activity in rats performing an odor-discrimination task. J Neurosci 7(3):716–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum H, Sauvage M, Fortin N, Komorowski R, Lipton P (2012) Towards a functional organization of episodic memory in the medial temporal lobe. Neurosci Biobehav Rev 36(7):1597–1608

    Article  PubMed  Google Scholar 

  • Eller J, Zarnadze S, Bauerle P, Dugladze T, Gloveli T (2015) Cell type-specific separation of subicular principal neurons during network activities. PLoS ONE 10(4):e0123636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eschenko O, Molle M, Born J, Sara SJ (2006) Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci 26(50):12914–12920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschenko O, Ramadan W, Molle M, Born J, Sara SJ (2008) Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem 15(4):222–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Esposito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi FJ, Schinder AF (2005) Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 25(44):10074–10086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM (2013) BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79(4):658–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix-Ortiz AC, Tye KM (2014) Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J Neurosci 34(2):586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105–118

    Article  CAS  PubMed  Google Scholar 

  • Feng T, Silva D, Foster DJ (2015) Dissociation between the experience-dependent development of hippocampal theta sequences and single-trial phase precession. J Neurosci 35(12):4890–4902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, Ludvig N (2008) Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci 28(44):11250–11262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferbinteanu J, McDonald RJ (2001) Dorsal/ventral hippocampus, fornix, and conditioned place preference. Hippocampus 11(2):187–200

    Article  CAS  PubMed  Google Scholar 

  • Ferbinteanu J, Shapiro ML (2003) Prospective and retrospective memory coding in the hippocampus. Neuron 40(6):1227–1239

    Article  CAS  PubMed  Google Scholar 

  • Finch DM, Nowlin NL, Babb TL (1983) Demonstration of axonal projections of neurons in the rat hippocampus and subiculum by intracellular injection of HRP. Brain Res 271(2):201–216

    Article  CAS  PubMed  Google Scholar 

  • Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440(7084):680–683

    Article  CAS  PubMed  Google Scholar 

  • Foster TC, Castro CA, McNaughton BL (1989) Spatial selectivity of rat hippocampal neurons: dependence on preparedness for movement. Science 244(4912):1580–1582

    Article  CAS  PubMed  Google Scholar 

  • Fox SE, Ranck JB Jr (1981) Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp Brain Res 41(3–4):399–410

    CAS  PubMed  Google Scholar 

  • Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27(1):169–178

    Article  CAS  PubMed  Google Scholar 

  • Frank LM, Stanley GB, Brown EN (2004) Hippocampal plasticity across multiple days of exposure to novel environments. J Neurosci 24(35):7681–7689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman WJ (2007) Definitions of state variables and state space for brain-computer interface: Part 1. Multiple hierarchical levels of brain function. Cogn Neurodyn 1(1):3–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336(6195):170–173

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470

    Article  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480

    Article  PubMed  Google Scholar 

  • Frotscher M, Leranth C (1985) Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J Comp Neurol 239(2):237–246

    Article  CAS  PubMed  Google Scholar 

  • Fyhn M, Molden S, Hollup S, Moser MB, Moser E (2002) Hippocampal neurons responding to first-time dislocation of a target object. Neuron 35(3):555–566

    Article  CAS  PubMed  Google Scholar 

  • Gallagher M, Chiba AA (1996) The amygdala and emotion. Curr Opin Neurobiol 6(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Garthe A, Behr J, Kempermann G (2009) Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE 4(5):e5464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ge S, Sailor KA, Ming GL, Song H (2008) Synaptic integration and plasticity of new neurons in the adult hippocampus. J Physiol 586(16):3759–3765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595):76–81

    Article  CAS  PubMed  Google Scholar 

  • Gilbert PE, Brushfield AM (2009) The role of the CA3 hippocampal subregion in spatial memory: a process oriented behavioral assessment. Prog Neuropsychopharmacol Biol Psych 33(5):774–781

    Article  Google Scholar 

  • Gillespie AK, Jones EA, Lin Y-H, Karlsson MP, Kay K, Yoon SY, Tong LM, Nova P, Carr JS, Frank LM, Huang Y (2016) Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron 90(4):740–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12(10):1222–1223

    Article  CAS  PubMed  Google Scholar 

  • Givens BS, Olton DS (1990) Cholinergic and GABAergic modulation of medial septal area: effect on working memory. Behav Neurosci 104(6):849–855

    Article  CAS  PubMed  Google Scholar 

  • Gold AE, Kesner RP (2005) The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat. Hippocampus 15(6):808–814

    Article  PubMed  Google Scholar 

  • Gomperts SN, Kloosterman F, Wilson MA (2015) VTA neurons coordinate with the hippocampal reactivation of spatial experience. eLife 4

    Google Scholar 

  • Gonzales RB, DeLeon Galvan CJ, Rangel YM, Claiborne BJ (2001) Distribution of thorny excrescences on CA3 pyramidal neurons in the rat hippocampus. J Comp Neurol 430(3):357–368

    Article  CAS  PubMed  Google Scholar 

  • Grastyan E, Lissak K, Madarasz I, Donhoffer H (1959) Hippocampal electrical activity during the development of conditioned reflexes. Electroencephalogr Clin Neurophysiol 11(3):409–430

    Article  CAS  PubMed  Google Scholar 

  • Gray CM, Maldonado PE, Wilson M, McNaughton B (1995) Tetrodes markedly improve the reliability and yield of multiple single- unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods 63(1–2):43–54

    Article  CAS  PubMed  Google Scholar 

  • Green JD, Arduini AA (1954) Hippocampal electrical activity in arousal. J Neurophysiol 17(6):533–557

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23(1):103–120

    Article  CAS  PubMed  Google Scholar 

  • Grosmark AD, Mizuseki K, Pastalkova E, Diba K, Buzsaki G (2012) REM sleep reorganizes hippocampal excitability. Neuron 75(6):1001–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, Ge S (2012) Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15(12):1700–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyas AI, Hajos N, Katona I, Freund TF (2003) Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. Eur J Neurosci 17(9):1861–1872

    Article  CAS  PubMed  Google Scholar 

  • Gupta AS, van der Meer MA, Touretzky DS, Redish AD (2010) Hippocampal replay is not a simple function of experience. Neuron 65(5):695–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AS, van der Meer MA, Touretzky DS, Redish AD (2012) Segmentation of spatial experience by hippocampal theta sequences. Nat Neurosci 15(7):1032–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzowski JF, Knierim JJ, Moser EI (2004) Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44(4):581–584

    Article  CAS  PubMed  Google Scholar 

  • Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2(12):1120–1124

    Article  CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent phase precession in entorhinal grid cells. Nature 453(7199):1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801–806

    Article  CAS  PubMed  Google Scholar 

  • Hales JB, Schlesiger MI, Leutgeb JK, Squire LR, Leutgeb S, Clark RE (2014) Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. Cell Rep 9(3):893–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris AZ, Gordon JA (2015) Long-range neural synchrony in behavior. Annu Rev Neurosci 38:171–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo ME (2005) What is the function of hippocampal theta rhythm?-Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 15(7):936–949

    Article  PubMed  Google Scholar 

  • Hasselmo ME, Bodelon C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14(4):793–817

    Article  PubMed  Google Scholar 

  • Hasselmo ME, Schnell E (1994) Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci 14(6):3898–3914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henke PG (1990) Hippocampal pathway to the amygdala and stress ulcer development. Brain Res Bull 25(5):691–695

    Article  CAS  PubMed  Google Scholar 

  • Henze DA, Buzsaki G (2007) Hilar mossy cells: functional identification and activity in vivo. Prog Brain Res 163:199–810

    Article  PubMed  Google Scholar 

  • Herkenham M (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177(4):589–610

    Article  CAS  PubMed  Google Scholar 

  • Hill AJ (1978) First occurrence of hippocampal spatial firing in a new environment. Exp Neurol 62(2):282–297

    Article  CAS  PubMed  Google Scholar 

  • Hitti FL, Siegelbaum SA (2014) The hippocampal CA2 region is essential for social memory. Nature 508(7494):88–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hok V, Lenck-Santini PP, Roux S, Save E, Muller RU, Poucet B (2007) Goal-related activity in hippocampal place cells. J Neurosci 27(3):472–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376(6535):33–36

    Article  CAS  PubMed  Google Scholar 

  • Huxter J, Burgess N, O’Keefe J (2003) Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425(6960):828–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman JM, Wyble BP, Goyal V, Rossi CA, Hasselmo ME (2003) Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J Neurosci 23(37):11725–11731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi KM, Lu L, Colgin LL, Moser MB, Moser EI (2014) Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature 510(7503):143–147

    Article  CAS  PubMed  Google Scholar 

  • Isaac JT, Buchanan KA, Muller RU, Mellor JR (2009) Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro. J Neurosci 29(21):6840–6850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizuka N (2001) Laminar organization of the pyramidal cell layer of the subiculum in the rat. J Comp Neurol 435(1):89–110

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362(1):17–45

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295(4):580–623

    Article  CAS  PubMed  Google Scholar 

  • Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA, Buzsaki G (2006) Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52(5):871–882

    Article  CAS  PubMed  Google Scholar 

  • Ito HT, Zhang SJ, Witter MP, Moser EI, Moser MB (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522(7554):50–55

    Article  CAS  PubMed  Google Scholar 

  • Itskov V, Pastalkova E, Mizuseki K, Buzsaki G, Harris KD (2008) Theta-mediated dynamics of spatial information in hippocampus. J Neurosci 28(23):5959–5964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson J, Goutagny R, Williams S (2011) Fast and slow gamma rhythms are intrinsically and independently generated in the subiculum. J Neurosci 31(34):12104–12117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JC, Johnson A, Redish AD (2006) Hippocampal sharp waves and reactivation during awake states depend on repeated sequential experience. J Neurosci 26(48):12415–12426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav SP, Kemere C, German PW, Frank LM (2012) Awake hippocampal sharp-wave ripples support spatial memory. Science 336(6087):1454–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav SP, Rothschild G, Roumis DK, Frank LM (2016) Coordinated excitation and inhibition of prefrontal ensembles during awake hippocampal sharp-wave ripple events. Neuron 90(1):113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517(7534):284–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosiewicz B, McNaughton BL, Skaggs WE (2002) Hippocampal population activity during the small-amplitude irregular activity state in the rat. J Neurosci 22(4):1373–1384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarsky T, Mady R, Kennedy B, Spruston N (2008) Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. J Comp Neurol 506(4):535–547

    Article  PubMed  Google Scholar 

  • Jensen O, Lisman JE (2000) Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J Neurophysiol 83(5):2602–2609

    Article  CAS  PubMed  Google Scholar 

  • Jessberger S, Clark RE, Broadbent NJ, Clemenson GD Jr, Consiglio A, Lie DC, Squire LR, Gage FH (2009) Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem 16(2):147–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10(1):100–107

    Article  CAS  PubMed  Google Scholar 

  • Jog MS, Connolly CI, Kubota Y, Iyengar DR, Garrido L, Harlan R, Graybiel AM (2002) Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. J Neurosci Methods 117(2):141–152

    Article  CAS  PubMed  Google Scholar 

  • Johnson A, Redish AD (2007) Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci 27(45):12176–12189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston ST, Shtrahman M, Parylak S, Goncalves JT, Gage FH (2016) Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness. Neurobiol Learn Mem 129:60–68

    Article  PubMed  Google Scholar 

  • Jones MW, McHugh TJ (2011) Updating hippocampal representations: CA2 joins the circuit. Trends Neurosci 34(10):526–535. (S0166-2236(11)00123-8)

    Article  CAS  PubMed  Google Scholar 

  • Jones MW, Wilson MA (2005) Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol 3(12):e402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung MW, McNaughton BL (1993) Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3(2):165–182

    Article  CAS  PubMed  Google Scholar 

  • Jung MW, Wiener SI, McNaughton BL (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14(12):7347–7356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jutras MJ, Fries P, Buffalo EA (2013) Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proc Natl Acad Sci USA 110(32):13144–13149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72(5):847–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajiwara R, Wouterlood FG, Sah A, Boekel AJ, Baks-te Bulte LT, Witter MP (2008) Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1–an anatomical study in the rat. Hippocampus 18(3):266–280

    Article  PubMed  Google Scholar 

  • Kali S, Dayan P (2000) The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. J Neurosci 20(19):7463–7477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kali S, Freund TF (2005) Distinct properties of two major excitatory inputs to hippocampal pyramidal cells: a computational study. Eur J Neurosci 22(8):2027–2048

    Article  PubMed  Google Scholar 

  • Kamondi A, Acsady L, Wang XJ, Buzsaki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8(3):244–261

    Article  CAS  PubMed  Google Scholar 

  • Kaplan R, Adhikari MH, Hindriks R, Mantini D, Murayama Y, Logothetis NK, Deco G (2016) Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr Biol 26(5):686–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson MP, Frank LM (2008) Network dynamics underlying the formation of sparse, informative representations in the hippocampus. J Neurosci 28(52):14271–14281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson MP, Frank LM (2009) Awake replay of remote experiences in the hippocampus. Nat Neurosci 12(7):913–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay K, Sosa M, Chung JE, Karlsson MP, Larkin MC, Frank LM (2016) A hippocampal network for spatial coding during immobility and sleep. Nature 531(7593):185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keinath AT, Wang ME, Wann EG, Yuan RK, Dudman JT, Muzzio IA (2014) Precise spatial coding is preserved along the longitudinal hippocampal axis. Hippocampus 24(12):1533–1548

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemere C, Carr MF, Karlsson MP, Frank LM (2013) Rapid and continuous modulation of hippocampal network state during exploration of new places. PLoS ONE 8(9):e73114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp IR, Kaada BR (1975) The relation of hippocampal theta activity to arousal, attentive behaviour and somato-motor movements in unrestrained cats. Brain Res 95(2–3):323–342

    Article  CAS  PubMed  Google Scholar 

  • Kennedy PJ, Shapiro ML (2009) Motivational states activate distinct hippocampal representations to guide goal-directed behaviors. Proc Natl Acad Sci USA 106(26):10805–10810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr KM, Agster KL, Furtak SC, Burwell RD (2007) Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus 17(9):697–708

    Article  PubMed  Google Scholar 

  • Kesner RP (2007) Behavioral functions of the CA3 subregion of the hippocampus. Learn Mem 14(11):771–781

    Article  PubMed  Google Scholar 

  • Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, Zeng H, Fenton AA, Hen R (2013) Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77(5):955–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SM, Ganguli S, Frank LM (2012) Spatial information outflow from the hippocampal circuit: distributed spatial coding and phase precession in the subiculum. J Neurosci 32(34):11539–11558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Spruston N (2012) Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus 22(4):693–706

    Article  PubMed  Google Scholar 

  • Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser MB (2008) Finite scale of spatial representation in the hippocampus. Science 321(5885):140–143

    Article  CAS  PubMed  Google Scholar 

  • Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci USA 99(16):10825–10830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321(5885):53–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knierim JJ, Lee I, Hargreaves EL (2006) Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory. Hippocampus 16(9):755–764

    Article  PubMed  Google Scholar 

  • Knierim JJ, Neunuebel JP (2016) Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiol Learn Mem 129:38–49

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishijo H, Fukuda M, Bures J, Ono T (1997) Task-dependent representations in rat hippocampal place neurons. J Neurophysiol 78(2):597–613

    Article  CAS  PubMed  Google Scholar 

  • Kocsis B, Vertes RP (1997) Phase relations of rhythmic neuronal firing in the supramammillary nucleus and mammillary body to the hippocampal theta activity in urethane anesthetized rats. Hippocampus 7(2):204–214

    Article  CAS  PubMed  Google Scholar 

  • Koenig J, Linder AN, Leutgeb JK, Leutgeb S (2011) The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332(6029):592–595 (332/6029/592)

    Article  CAS  PubMed  Google Scholar 

  • Kohara K, Pignatelli M, Rivest AJ, Jung HY, Kitamura T, Suh J, Frank D, Kajikawa K, Mise N, Obata Y, Wickersham IR, Tonegawa S (2014) Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci 17(2):269–279

    Article  CAS  PubMed  Google Scholar 

  • Kohler C (1985) Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236(4):504–522

    Article  CAS  PubMed  Google Scholar 

  • Komorowski RW, Garcia CG, Wilson A, Hattori S, Howard MW, Eichenbaum H (2013) Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. J Neurosci 33(18):8079–8087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komorowski RW, Manns JR, Eichenbaum H (2009) Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where. J Neurosci 29(31):9918–9929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 97(4):1867–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus BJ, Robinson RJ 2nd, White JA, Eichenbaum H, Hasselmo ME (2013) Hippocampal “time cells”: time versus path integration. Neuron 78(6):1090–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kropff E, Carmichael JE, Moser MB, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523(7561):419–424

    Article  CAS  PubMed  Google Scholar 

  • Kudrimoti HS, Barnes CA, McNaughton BL (1999) Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19(10):4090–4101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumaran D, Maguire EA (2007) Which computational mechanisms operate in the hippocampus during novelty detection? Hippocampus 17(9):735–748

    Article  PubMed  Google Scholar 

  • Kwag J, Paulsen O (2009) Bidirectional control of spike timing by GABA(A) receptor-mediated inhibition during theta oscillation in CA1 pyramidal neurons. NeuroReport 20(13):1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Lansink CS, Goltstein PM, Lankelma JV, Joosten RN, McNaughton BL, Pennartz CM (2008) Preferential reactivation of motivationally relevant information in the ventral striatum. J Neurosci 28(25):6372–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lansink CS, Goltstein PM, Lankelma JV, McNaughton BL, Pennartz CM (2009) Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol 7(8):e1000173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larimer P, Strowbridge BW (2008) Nonrandom local circuits in the dentate gyrus. J Neurosci 28(47):12212–12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MC, Lykken C, Tye LD, Wickelgren JG, Frank LM (2014) Hippocampal output area CA1 broadcasts a generalized novelty signal during an object-place recognition task. Hippocampus 24(7):773–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurberg S (1979) Commissural and intrinsic connections of the rat hippocampus. J Comp Neurol 184(4):685–708

    Article  CAS  PubMed  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36(6):1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Wang C, Deshmukh SS, Knierim JJ (2015) Neural population evidence of functional heterogeneity along the CA3 transverse axis: pattern completion versus pattern separation. Neuron 87(5):1093–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I, Jerman TS, Kesner RP (2005) Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus. Neurobiol Learn Mem 84(2):138–147

    Article  PubMed  Google Scholar 

  • Lee I, Kesner RP (2003) Differential roles of dorsal hippocampal subregions in spatial working memory with short versus intermediate delay. Behav Neurosci 117(5):1044–1053

    Article  PubMed  Google Scholar 

  • Lee I, Kesner RP (2004) Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus 14(3):301–310

    Article  PubMed  Google Scholar 

  • Lee I, Rao G, Knierim JJ (2004a) A double dissociation between hippocampal subfields: differential time course of CA3 and CA1 place cells for processing changed environments. Neuron 42(5):803–815

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Yoganarasimha D, Rao G, Knierim JJ (2004b) Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430(6998):456–459

    Article  CAS  PubMed  Google Scholar 

  • Lee SE, Simons SB, Heldt SA, Zhao M, Schroeder JP, Vellano CP, Cowan DP, Ramineni S, Yates CK, Feng Y, Smith Y, Sweatt JD, Weinshenker D, Ressler KJ, Dudek SM, Hepler JR (2010) RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. Proc Natl Acad Sci USA 107(39):16994–16998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lein ES, Callaway EM, Albright TD, Gage FH (2005) Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction. J Comp Neurol 485(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Lein ES, Zhao X, Gage FH (2004) Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24(15):3879–3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenck-Santini PP, Rivard B, Muller RU, Poucet B (2005) Study of CA1 place cell activity and exploratory behavior following spatial and nonspatial changes in the environment. Hippocampus 15(3):356–369

    Article  PubMed  Google Scholar 

  • Lengyel M, Kwag J, Paulsen O, Dayan P (2005) Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves. Nat Neurosci 8(12):1677–1683

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315(5814):961–966

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb JK, Leutgeb S, Treves A, Meyer R, Barnes CA, McNaughton BL, Moser MB, Moser EI (2005a) Progressive transformation of hippocampal neuronal representations in “morphed” environments. Neuron 48(2):345–358

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb S, Leutgeb JK (2007) Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learn Mem 14(11):745–757

    Article  PubMed  Google Scholar 

  • Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL, Moser MB (2005b) Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309(5734):619–623

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb S, Leutgeb JK, Moser MB, Moser EI (2005c) Place cells, spatial maps and the population code for memory. Curr Opin Neurobiol 15(6):738–746

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI (2004) Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305(5688):1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29(31):9771–9777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416(6876):90–94

    Article  CAS  PubMed  Google Scholar 

  • Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6(5):526–531

    Article  CAS  PubMed  Google Scholar 

  • Li XG, Somogyi P, Ylinen A, Buzsaki G (1994) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 339(2):181–208

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Aimone JB, Xu X, Callaway EM, Gage FH (2012) Development of GABAergic inputs controls the contribution of maturing neurons to the adult hippocampal network. Proc Natl Acad Sci USA 109(11):4290–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman J (2003) Long-term potentiation: outstanding questions and attempted synthesis. Philos Trans R Soc Lond B Biol Sci 358(1432):829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman JE (1999) Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46(5):703–713

    Article  CAS  PubMed  Google Scholar 

  • Lisman JE, Otmakhova NA (2001) Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11(5):551–568

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Eschenko O, Murayama Y, Augath M, Steudel T, Evrard HC, Besserve M, Oeltermann A (2012) Hippocampal-cortical interaction during periods of subcortical silence. Nature 491(7425):547–553

    Article  CAS  PubMed  Google Scholar 

  • Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45:381–438

    Google Scholar 

  • Lorente de Nó R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  • Loughlin SE, Foote SL, Bloom FE (1986) Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience 18(2):291–306

    Article  CAS  PubMed  Google Scholar 

  • Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29(1):145–156

    Article  CAS  PubMed  Google Scholar 

  • Loureiro M, Lecourtier L, Engeln M, Lopez J, Cosquer B, Geiger K, Kelche C, Cassel JC, Pereira de Vasconcelos A (2012) The ventral hippocampus is necessary for expressing a spatial memory. Brain Struct Funct 217(1):93–106

    Article  PubMed  Google Scholar 

  • Lu L, Igarashi KM, Witter MP, Moser EI, Moser MB (2015) Topography of place maps along the CA3-to-CA2 axis of the hippocampus. Neuron 87(5):1078–1092

    Article  CAS  PubMed  Google Scholar 

  • Lubenov EV, Siapas AG (2009) Hippocampal theta oscillations are travelling waves. Nature 459(7246):534–539

    Article  CAS  PubMed  Google Scholar 

  • MacDonald CJ, Carrow S, Place R, Eichenbaum H (2013) Distinct hippocampal time cell sequences represent odor memories in immobilized rats. J Neurosci 33(36):14607–14616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71(4):737–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 550(Pt 3):873–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra S, Cross RW, van der Meer MA (2012) Theta phase precession beyond the hippocampus. Rev Neurosci 23(1):39–65

    Article  PubMed  Google Scholar 

  • Mankin EA, Diehl GW, Sparks FT, Leutgeb S, Leutgeb JK (2015) Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron 85(1):190–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mankin EA, Sparks FT, Slayyeh B, Sutherland RJ, Leutgeb S, Leutgeb JK (2012) Neuronal code for extended time in the hippocampus. Proc Natl Acad Sci USA 109(47):19462–19467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manns JR, Eichenbaum H (2009) A cognitive map for object memory in the hippocampus. Learn Mem 16(10):616–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin-Burgin A, Mongiat LA, Pardi MB, Schinder AF (2012) Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335(6073):1238–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  CAS  PubMed  Google Scholar 

  • Markus EJ, Qin YL, Leonard B, Skaggs WE, Mcnaughton BL, Barnes CA (1995) Interactions between location and task affect the spatial and directional firing of hippocampal-neurons. J Neurosci 15(11):7079–7094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci 262(841):23–81

    Article  CAS  PubMed  Google Scholar 

  • Martig AK, Mizumori SJ (2011) Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task. Hippocampus 21(2):172–184

    Article  PubMed  PubMed Central  Google Scholar 

  • McAvoy K, Besnard A, Sahay A (2015) Adult hippocampal neurogenesis and pattern separation in DG: a role for feedback inhibition in modulating sparseness to govern population-based coding. Front Syst Neurosci 9:120

    Article  PubMed  PubMed Central  Google Scholar 

  • McClelland JL, Goddard NH (1996) Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus 6(6):654–665

    Article  CAS  PubMed  Google Scholar 

  • McKenzie S, Frank AJ, Kinsky NR, Porter B, Riviere PD, Eichenbaum H (2014) Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 83(1):202–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNaughton BL, Barnes CA (1977) Physiological identification and analysis of dentate granule cell responses to stimulation of the medial and lateral perforant pathways in the rat. J Comp Neurol 175(4):439–454

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Barnes CA, Meltzer J, Sutherland RJ (1989) Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge. Exp Brain Res 76(3):485–496

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Barnes CA, O’Keefe J (1983) The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 52(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7(8):663–678

    Article  CAS  PubMed  Google Scholar 

  • Mcnaughton BL, Morris RG (1987) Hippocampal Synaptic Enhancement and Information-Storage within a Distributed Memory System. Trends Neurosci 10(10):408–415

    Article  Google Scholar 

  • Meeter M, Murre JM, Talamini LM (2004) Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits. Hippocampus 14(6):722–741

    Article  CAS  PubMed  Google Scholar 

  • Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102(3):527–540

    Article  CAS  PubMed  Google Scholar 

  • Mehta MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417(6890):741–746

    Article  CAS  PubMed  Google Scholar 

  • Mehta MR, Quirk MC, Wilson MA (2000) Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25(3):707–715

    Article  CAS  PubMed  Google Scholar 

  • Meibach RC, Siegel A (1977) Efferent connections of the hippocampal formation in the rat. Brain Res 124(2):197–224

    Article  CAS  PubMed  Google Scholar 

  • Mercer A, Eastlake K, Trigg HL, Thomson AM (2012) Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus. Hippocampus 22(1):43–56

    Article  PubMed  Google Scholar 

  • Mercer A, Trigg HL, Thomson AM (2007) Characterization of neurons in the CA2 subfield of the adult rat hippocampus. J Neurosci 27(27):7329–7338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milstein AD, Bloss EB, Apostolides PF, Vaidya SP, Dilly GA, Zemelman BV, Magee JC (2015) Inhibitory gating of input comparison in the CA1 microcircuit. Neuron 87(6):1274–1289

    Article  CAS  PubMed  Google Scholar 

  • Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273(5660):297–298

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SJ, Rawlins JN, Steward O, Olton DS (1982) Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci 2(3):292–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65(1):37–100

    Article  CAS  PubMed  Google Scholar 

  • Mizumori SJ, McNaughton BL, Barnes CA, Fox KB (1989) Preserved spatial coding in hippocampal CA1 pyramidal cells during reversible suppression of CA3c output: evidence for pattern completion in hippocampus. J Neurosci 9(11):3915–3928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuseki K, Sirota A, Pastalkova E, Buzsaki G (2009) Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64(2):267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moita MA, Rosis S, Zhou Y, LeDoux JE, Blair HT (2003) Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron 37(3):485–497

    Article  CAS  PubMed  Google Scholar 

  • Molle M, Eschenko O, Gais S, Sara SJ, Born J (2009) The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci 29(5):1071–1081

    Article  PubMed  Google Scholar 

  • Montgomery SM, Betancur MI, Buzsaki G (2009) Behavior-dependent coordination of multiple theta dipoles in the hippocampus. J Neurosci 29(5):1381–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery SM, Buzsaki G (2007) Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc Natl Acad Sci USA 104(36):14495–14500 0701826104 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • /pnas.0701826104

    Google Scholar 

  • Montgomery SM, Sirota A, Buzsaki G (2008) Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 28(26):6731–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683

    Article  CAS  PubMed  Google Scholar 

  • Morris RG, Schenk F, Tweedie F, Jarrard LE (1990) Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur J Neurosci 2(12):1016–1028

    Article  PubMed  Google Scholar 

  • Moser E, Moser MB, Andersen P (1993) Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci 13(9):3916–3925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8(6):608–619

    Article  CAS  PubMed  Google Scholar 

  • Moser MB, Moser EI, Forrest E, Andersen P, Morris RG (1995) Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci USA 92(21):9697–9701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muenzinger KF (1938) Vicarious trial and error at a point of choice. I. A general survey of its relation to learning efficiency. J Genet Psychol 12:75–86

    Google Scholar 

  • Muller RU, Kubie JL (1987) The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci 7(7):1951–1968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller RU, Kubie JL, Ranck JB Jr (1987) Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J Neurosci 7(7):1935–1950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19(21):9497–9507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashiba T, Buhl DL, McHugh TJ, Tonegawa S (2009) Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62(6):781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Rodriguez Barrera V, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1):188–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S (2008) Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319(5867):1260–1264

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297(5579):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S (2003) Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38(2):305–315

    Article  CAS  PubMed  Google Scholar 

  • Neunuebel JP, Knierim JJ (2012) Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J Neurosci 32(11):3848–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neunuebel JP, Knierim JJ (2014) CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron 81(2):416–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neunuebel JP, Yoganarasimha D, Rao G, Knierim JJ (2013) Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex. J Neurosci 33(22):9246–9258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitz D, McNaughton B (2004) Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J Neurophysiol 91(2):863–872

    Article  PubMed  Google Scholar 

  • Nokia MS, Mikkonen JE, Penttonen M, Wikgren J (2012) Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Front Behav Neurosci 6:84

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51(1):78–109

    Article  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175

    Article  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, London

    Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3(3):317–330

    Article  PubMed  Google Scholar 

  • O’Mara S (2005) The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. J Anat 207(3):271–282

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Mara S (2006) Controlling hippocampal output: the central role of subiculum in hippocampal information processing. Behav Brain Res 174(2):304–312

    Article  PubMed  CAS  Google Scholar 

  • O’Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J (2010) Play it again: reactivation of waking experience and memory. Trends Neurosci 33(5):220–229

    Article  PubMed  CAS  Google Scholar 

  • O’Neill J, Senior T, Csicsvari J (2006) Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49(1):143–155

    Article  PubMed  CAS  Google Scholar 

  • O’Neill J, Senior TJ, Allen K, Huxter JR, Csicsvari J (2008) Reactivation of experience-dependent cell assembly patterns in the hippocampus. Nat Neurosci 11(2):209–215

    Article  PubMed  CAS  Google Scholar 

  • Ochiishi T, Saitoh Y, Yukawa A, Saji M, Ren Y, Shirao T, Miyamoto H, Nakata H, Sekino Y (1999) High level of adenosine A1 receptor-like immunoreactivity in the CA2/CA3a region of the adult rat hippocampus. Neuroscience 93(3):955–967

    Article  CAS  PubMed  Google Scholar 

  • Olton DS, Branch M, Best PJ (1978) Spatial correlates of hippocampal unit activity. Exp Neurol 58(3):387–409

    Article  CAS  PubMed  Google Scholar 

  • Olton DS, Papas BC (1979) Spatial memory and hippocampal function. Neuropsychologia 17(6):669–682

    Article  CAS  PubMed  Google Scholar 

  • Olypher AV, Lansky P, Muller RU, Fenton AA (2003) Quantifying location-specific information in the discharge of rat hippocampal place cells. J Neurosci Methods 127(2):123–135

    Article  CAS  PubMed  Google Scholar 

  • Osborne LC, Palmer SE, Lisberger SG, Bialek W (2008) The neural basis for combinatorial coding in a cortical population response. J Neurosci 28(50):13522–13531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD, Garcia-Garcia AL, Spellman TJ, Gordon JA (2016) Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 89(4):857–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagani JH, Zhao M, Cui Z, Avram SK, Caruana DA, Dudek SM, Young WS (2015) Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol Psychiatry 20(4):490–499

    Article  CAS  PubMed  Google Scholar 

  • Pan WX, McNaughton N (2002) The role of the medial supramammillary nucleus in the control of hippocampal theta activity and behaviour in rats. Eur J Neurosci 16(9):1797–1809

    Article  PubMed  Google Scholar 

  • Papp G, Witter MP, Treves A (2007) The CA3 network as a memory store for spatial representations. Learn Mem 14(11):732–744

    Article  PubMed  Google Scholar 

  • Park E, Dvorak D, Fenton AA (2011) Ensemble place codes in hippocampus: CA1, CA3, and dentate gyrus place cells have multiple place fields in large environments. PLoS ONE 6(7):e22349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastalkova E, Itskov V, Amarasingham A, Buzsaki G (2008) Internally generated cell assembly sequences in the rat hippocampus. Science 321(5894):1322–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel J, Fujisawa S, Berenyi A, Royer S, Buzsaki G (2012) Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron 75(3):410–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel J, Schomburg EW, Berenyi A, Fujisawa S, Buzsaki G (2013) Local generation and propagation of ripples along the septotemporal axis of the hippocampus. J Neurosci 33(43):17029–17041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlides C, Winson J (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci 9(8):2907–2918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paz R, Pare D (2013) Physiological basis for emotional modulation of memory circuits by the amygdala. Curr Opin Neurobiol 23(3):381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penttonen M, Kamondi A, Sik A, Acsady L, Buzsaki G (1997) Feed-forward and feed-back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts. Hippocampus 7(4):437–450

    Article  CAS  PubMed  Google Scholar 

  • Petrulis A, Alvarez P, Eichenbaum H (2005) Neural correlates of social odor recognition and the representation of individual distinctive social odors within entorhinal cortex and ventral subiculum. Neuroscience 130(1):259–274

    Article  CAS  PubMed  Google Scholar 

  • Petsche H, Stumpf C (1962) The origin of theta-rhytm in the rabbit hippocampus. Wien Klin Wochenschr 74:696–700

    CAS  PubMed  Google Scholar 

  • Pfeiffer BE, Foster DJ (2013) Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497(7447):74–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer BE, Foster DJ (2015) Place cells. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science 349(6244):180–183

    Article  CAS  PubMed  Google Scholar 

  • Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkanen A (1999) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403(2):229–260

    Article  CAS  PubMed  Google Scholar 

  • Piskorowski RA, Chevaleyre V (2012) Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons. Cell Mol Life Sci 69(1):75–88

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat—A review. Ann Ny Acad Sci 911:369–391

    Article  CAS  PubMed  Google Scholar 

  • Pothuizen HH, Zhang WN, Jongen-Relo AL, Feldon J, Yee BK (2004) Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur J Neurosci 19(3):705–712

    Article  PubMed  Google Scholar 

  • Potvin O, Allen K, Thibaudeau G, Dore FY, Goulet S (2006) Performance on spatial working memory tasks after dorsal or ventral hippocampal lesions and adjacent damage to the subiculum. Behav Neurosci 120(2):413–422

    Article  PubMed  Google Scholar 

  • Potvin O, Dore FY, Goulet S (2007) Contributions of the dorsal hippocampus and the dorsal subiculum to processing of idiothetic information and spatial memory. Neurobiol Learn Mem 87(4):669–678

    Article  PubMed  Google Scholar 

  • Poucet B, Thinus-Blanc C, Muller RU (1994) Place cells in the ventral hippocampus of rats. NeuroReport 5(16):2045–2048

    Article  CAS  PubMed  Google Scholar 

  • Rajasethupathy P, Sankaran S, Marshel JH, Kim CK, Ferenczi E, Lee SY, Berndt A, Ramakrishnan C, Jaffe A, Lo M, Liston C, Deisseroth K (2015) Projections from neocortex mediate top-down control of memory retrieval. Nature 526(7575):653–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadan W, Eschenko O, Sara SJ (2009) Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS ONE 4(8):e6697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • y Cajal SR (1893) Estructura del asta de Ammon y fascia dentata. Ann Soc Esp Hist Nat 22

    Google Scholar 

  • Rangel LM, Quinn LK, Chiba AA, Gage FH, Aimone JB (2013) A hypothesis for temporal coding of young and mature granule cells. Front Neurosci 7:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Renno-Costa C, Lisman JE, Verschure PF (2014) A signature of attractor dynamics in the CA3 region of the hippocampus. PLoS Comput Biol 10(5):e1003641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richard GR, Titiz A, Tyler A, Holmes GL, Scott RC, Lenck-Santini PP (2013) Speed modulation of hippocampal theta frequency correlates with spatial memory performance. Hippocampus 23(12):1269–1279

    Article  PubMed  PubMed Central  Google Scholar 

  • Richmond MA, Yee BK, Pouzet B, Veenman L, Rawlins JN, Feldon J, Bannerman DM (1999) Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behav Neurosci 113(6):1189–1203

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (2007) An attractor network in the hippocampus: theory and neurophysiology. Learn Mem 14(11):714–731

    Article  PubMed  Google Scholar 

  • Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198(4314):315–317

    Article  CAS  PubMed  Google Scholar 

  • Roumis DK, Frank LM (2015) Hippocampal sharp-wave ripples in waking and sleeping states. Curr Opin Neurobiol 35:6–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland DC, Weible AP, Wickersham IR, Wu H, Mayford M, Witter MP, Kentros CG (2013) Transgenically targeted rabies virus demonstrates a major monosynaptic projection from hippocampal area CA2 to medial entorhinal layer II neurons. J Neurosci 33(37):14889–14898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royer S, Sirota A, Patel J, Buzsaki G (2010) Distinct representations and theta dynamics in dorsal and ventral hippocampus. J Neurosci 30(5):1777–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadowski JH, Jones MW, Mellor JR (2016) Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell Rep 14(8):1916–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472(7344):466–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Antonio A, Liban K, Ikrar T, Tsyganovskiy E, Xu X (2014) Distinct physiological and developmental properties of hippocampal CA2 subfield revealed by using anti-Purkinje cell protein 4 (PCP4) immunostaining. J Comp Neurol 522(6):1333–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312(5774):758–762

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Leutgeb S, Leutgeb JK (2015) Spatial and memory circuits in the medial entorhinal cortex. Curr Opin Neurobiol 32:16–23

    Article  CAS  PubMed  Google Scholar 

  • Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M (2014) Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci 34(24):8197–8209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Savelli F, Yoganarasimha D, Knierim JJ (2008) Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18(12):1270–1282

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE (1994) Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J Neurophysiol 72(5):2167–2180

    Article  CAS  PubMed  Google Scholar 

  • Scharfman HE (2007) The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 163:627–637

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE, Myers CE (2012) Hilar mossy cells of the dentate gyrus: a historical perspective. Front Neural Circuits 6:106

    PubMed  Google Scholar 

  • Scheffer-Teixeira R, Belchior H, Caixeta FV, Souza BC, Ribeiro S, Tort AB (2012) Theta phase modulates multiple layer-specific oscillations in the CA1 region. Cereb Cortex 22(10):2404–2414

    Article  PubMed  Google Scholar 

  • Schiller D, Eichenbaum H, Buffalo EA, Davachi L, Foster DJ, Leutgeb S, Ranganath C (2015) Memory and space: towards an understanding of the cognitive map. J Neurosci 35(41):13904–13911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesiger MI, Cannova CC, Boublil BL, Hales JB, Mankin EA, Brandon MP, Leutgeb JK, Leibold C, Leutgeb S (2015) The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Nat Neurosci 18(8):1123–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesiger MI, Cressey JC, Boublil B, Koenig J, Melvin NR, Leutgeb JK, Leutgeb S (2013) Hippocampal activation during the recall of remote spatial memories in radial maze tasks. Neurobiol Learn Mem 106:324–333

    Article  CAS  PubMed  Google Scholar 

  • Schmidt B, Hinman JR, Jacobson TK, Szkudlarek E, Argraves M, Escabi MA, Markus EJ (2013) Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making. J Neurosci 33(14):6212–6224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429(6988):184–187

    Article  CAS  PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekino Y, Obata K, Tanifuji M, Mizuno M, Murayama J (1997) Delayed signal propagation via CA2 in rat hippocampal slices revealed by optical recording. J Neurophysiol 78(3):1662–1668

    Article  CAS  PubMed  Google Scholar 

  • Sharp PE (1996) Multiple spatial/behavioral correlates for cells in the rat postsubiculum: multiple regression analysis and comparison to other hippocampal areas. Cereb Cortex 6(2):238–259

    Article  CAS  PubMed  Google Scholar 

  • Sharp PE (2006) Subicular place cells generate the same “map” for different environments: Comparison with hippocampal cells. Behav Brain Res 174(2):206–214

    Article  CAS  PubMed  Google Scholar 

  • Sharp PE, Green C (1994) Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat. J Neurosci 14(4):2339–2356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Kudrimoti HS, McNaughton BL, Barnes CA (1998) Reactivation of neuronal ensembles in hippocampal dentate gyrus during sleep after spatial experience. J Sleep Res 7(Suppl 1):6–16

    Article  PubMed  Google Scholar 

  • Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410(6826):372–376

    Article  CAS  PubMed  Google Scholar 

  • Siapas AG, Lubenov EV, Wilson MA (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46(1):141–151

    Article  CAS  PubMed  Google Scholar 

  • Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21(5):1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Siegle JH, Wilson MA (2014) Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. eLife 3:e03061

    Google Scholar 

  • Sik A, Penttonen M, Ylinen A, Buzsaki G (1995) Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15(10):6651–6665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sik A, Ylinen A, Penttonen M, Buzsaki G (1994) Inhibitory CA1-CA3-hilar region feedback in the hippocampus. Science 265(5179):1722–1724

    Article  CAS  PubMed  Google Scholar 

  • Silva D, Feng T, Foster DJ (2015) Trajectory events across hippocampal place cells require previous experience. Nat Neurosci 18(12):1772–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons SB, Escobedo Y, Yasuda R, Dudek SM (2009) Regional differences in hippocampal calcium handling provide a cellular mechanism for limiting plasticity. Proc Natl Acad Sci USA 106(33):14080–14084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer AC, Carr MF, Karlsson MP, Frank LM (2013) Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task. Neuron 77(6):1163–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer AC, Frank LM (2009) Rewarded outcomes enhance reactivation of experience in the hippocampus. Neuron 64(6):910–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer AC, Karlsson MP, Nathe AR, Carr MF, Frank LM (2010) Experience-dependent development of coordinated hippocampal spatial activity representing the similarity of related locations. J Neurosci 30(35):11586–11604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirota A, Csicsvari J, Buhl D, Buzsaki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci USA 100(4):2065–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skaggs WE, McNaughton BL (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271(5257):1870–1873

    Article  CAS  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL, Permenter M, Archibeque M, Vogt J, Amaral DG, Barnes CA (2007) EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. J Neurophysiol 98(2):898–910

    Article  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6(2):149–172

    Article  CAS  PubMed  Google Scholar 

  • Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322(5909):1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34:259–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staff NP, Jung HY, Thiagarajan T, Yao M, Spruston N (2000) Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. J Neurophysiol 84(5):2398–2408

    Article  CAS  PubMed  Google Scholar 

  • Stark E, Roux L, Eichler R, Senzai Y, Royer S, Buzsaki G (2014) Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron 83(2):467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stensola H, Stensola T, Solstad T, Froland K, Moser MB, Moser EI (2012) The entorhinal grid map is discretized. Nature 492(7427):72–78

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13(8):3252–3265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson EL, Caldwell HK (2014) Lesions to the CA2 region of the hippocampus impair social memory in mice. Eur J Neurosci 40(9):3294–3301

    Article  PubMed  PubMed Central  Google Scholar 

  • Steward O, Scoville SA (1976) Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169(3):347–370

    Article  CAS  PubMed  Google Scholar 

  • Stewart M, Fox SE (1990) Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci 13(5):163–168

    Article  CAS  PubMed  Google Scholar 

  • Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15(10):655–669

    Article  CAS  PubMed  Google Scholar 

  • Sullivan D, Csicsvari J, Mizuseki K, Montgomery S, Diba K, Buzsaki G (2011) Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J Neurosci 31(23):8605–8616. 31/23/8605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Nguyen AQ, Nguyen JP, Le L, Saur D, Choi J, Callaway EM, Xu X (2014) Cell-type-specific circuit connectivity of hippocampal CA1 revealed through cre-dependent rabies tracing. Cell Rep 7(1):269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki SS, Smith GK (1987) Spontaneous EEG spikes in the normal hippocampus. I. Behavioral correlates, laminar profiles and bilateral synchrony. Electroencephalogr Clin Neurophysiol 67(4):348–359

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172(1):49–84

    Article  CAS  PubMed  Google Scholar 

  • Takacs VT, Klausberger T, Somogyi P, Freund TF, Gulyas AI (2012) Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons. Hippocampus 22(6):1379–1391

    Article  CAS  PubMed  Google Scholar 

  • Tamamaki N, Abe K, Nojyo Y (1988) Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res 452(1–2):255–272

    Article  CAS  PubMed  Google Scholar 

  • Tao C, Zhang G, Xiong Y, Zhou Y (2015) Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience. Front Neural Circuits 9:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181–207

    Article  CAS  PubMed  Google Scholar 

  • Temprana SG, Mongiat LA, Yang SM, Trinchero MF, Alvarez DD, Kropff E, Giacomini D, Beltramone N, Lanuza GM, Schinder AF (2015) Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron 85(1):116–130

    Article  CAS  PubMed  Google Scholar 

  • Tesche CD, Karhu J (2000) Theta oscillations index human hippocampal activation during a working memory task. Proc Natl Acad Sci USA 97(2):919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson LT, Best PJ (1990) Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res 19;509(2):299–308

    Article  CAS  PubMed  Google Scholar 

  • Tolman EC (1938) The determiners of behavior at a choice point. Psychol Rev 45:1–41

    Article  Google Scholar 

  • Tort AB, Komorowski R, Eichenbaum H, Kopell N (2010) Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol 104(2):1195–1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H (2009) Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci USA 106(49):20942–20947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth K, Borhegyi Z, Freund TF (1993) Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of broca complex. J Neurosci 13(9):3712–3724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toth K, Freund TF (1992) Calbindin D28 k-containing nonpyramidal cells in the rat hippocampus: their immunoreactivity for GABA and projection to the medial septum. Neuroscience 49(4):793–805

    Article  CAS  PubMed  Google Scholar 

  • Treves A, Rolls E (1991) What determines the capacity of autoassociative memories in the brain? Comp Neural Sys 2(4):371–397

    Article  Google Scholar 

  • Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4(3):374–391

    Article  CAS  PubMed  Google Scholar 

  • Tronel S, Belnoue L, Grosjean N, Revest JM, Piazza PV, Koehl M, Abrous DN (2012) Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 22(2):292–298

    Article  PubMed  Google Scholar 

  • Ulanovsky N, Moss CF (2007) Hippocampal cellular and network activity in freely moving echolocating bats. Nat Neurosci 10(2):224–233

    Article  CAS  PubMed  Google Scholar 

  • Valero M, Cid E, Averkin RG, Aguilar J, Sanchez-Aguilera A, Viney TJ, Gomez-Dominguez D, Bellistri E, de la Prida LM (2015) Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples. Nat Neurosci 18(9):1281–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Cauter T, Poucet B, Save E (2008) Unstable CA1 place cell representation in rats with entorhinal cortex lesions. Eur J Neurosci 27(8):1933–1946

    Article  PubMed  Google Scholar 

  • van der Meer MA, Redish AD (2011) Theta phase precession in rat ventral striatum links place and reward information. J Neurosci 31(8):2843–2854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Strien NM, Cappaert NL, Witter MP (2009) The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 10(4):272–282

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26(4):407–418

    Article  CAS  PubMed  Google Scholar 

  • VanElzakker M, Fevurly RD, Breindel T, Spencer RL (2008) Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem 15(12):899–908

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazdarjanova A, Guzowski JF (2004) Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci 24(29):6489–6496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellano CP, Lee SE, Dudek SM, Hepler JR (2011) RGS14 at the interface of hippocampal signaling and synaptic plasticity. Trends Pharmacol Sci 32(11):666–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C (2007) Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 71(6):601–609

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinogradova OS (2001) Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 11(5):578–598

    Article  CAS  PubMed  Google Scholar 

  • Wang ME, Fraize NP, Yin L, Yuan RK, Petsagourakis D, Wann EG, Muzzio IA (2013) Differential roles of the dorsal and ventral hippocampus in predator odor contextual fear conditioning. Hippocampus 23(6):451–466

    Article  PubMed  Google Scholar 

  • Watrous AJ, Lee DJ, Izadi A, Gurkoff GG, Shahlaie K, Ekstrom AD (2013) A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus 23(8):656–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Weeden CS, Roberts JM, Kamm AM, Kesner RP (2015) The role of the ventral dentate gyrus in anxiety-based behaviors. Neurobiol Learn Mem 118:143–149

    Article  PubMed  Google Scholar 

  • Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS 3rd (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7(9):975–984

    Article  CAS  PubMed  Google Scholar 

  • Wersinger SR, Kelliher KR, Zufall F, Lolait SJ, O’Carroll AM, Young WS 3rd (2004) Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task. Horm Behav 46(5):638–645

    Article  CAS  PubMed  Google Scholar 

  • Wespatat V, Tennigkeit F, Singer W (2004) Phase sensitivity of synaptic modifications in oscillating cells of rat visual cortex. J Neurosci 24(41):9067–9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierzynski CM, Lubenov EV, Gu M, Siapas AG (2009) State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron 61(4):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikenheiser AM, Redish AD (2015) Hippocampal theta sequences reflect current goals. Nat Neurosci 18(2):289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DI, Langston RF, Schlesiger MI, Wagner M, Watanabe S, Ainge JA (2013) Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus 23(5):352–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265(5172):676–679

    Article  CAS  PubMed  Google Scholar 

  • Winson J (1972) Interspecies differences in the occurrence of theta. Behav Biol 7(4):479–487

    Article  CAS  PubMed  Google Scholar 

  • Winson J, Abzug C (1978) Neuronal transmission through hippocampal pathways dependent on behavior. J Neurophys 41(3):716–732

    Article  CAS  Google Scholar 

  • Witter MP (1986) A survey of the anatomy of the hippocampal formation, with emphasis on the septotemporal organization of its intrinsic and extrinsic connections. Adv Exp Med Biol 203:67–82

    Article  CAS  PubMed  Google Scholar 

  • Witter MP (1993) Organization of the entorhinal-hippocampal system: a review of current anatomical data. Hippocampus 3(Spec no):33–44

    Google Scholar 

  • Witter MP (2006) Connections of the subiculum of the rat: topography in relation to columnar and laminar organization. Behav Brain Res 174(2):251–264

    Article  CAS  PubMed  Google Scholar 

  • Witter MP (2007) Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity. Learn Mem 14(11):705–713

    Article  PubMed  Google Scholar 

  • Witter MP, Amaral DG (2004) Hippocampal formation. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, San Diego, pp 635–704

    Chapter  Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33(3):161–253

    Article  CAS  PubMed  Google Scholar 

  • Witter MP, Wouterlood FG, Naber PA, Van Haeften T (2000) Anatomical organization of the parahippocampal-hippocampal network. Ann N Y Acad Sci 911:1–24

    Article  CAS  PubMed  Google Scholar 

  • Wojtowicz JM, Askew ML, Winocur G (2008) The effects of running and of inhibiting adult neurogenesis on learning and memory in rats. Eur J Neurosci 27(6):1494–1502

    Article  PubMed  Google Scholar 

  • Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27(3):623–633

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Foster DJ (2014) Hippocampal replay captures the unique topological structure of a novel environment. J Neurosci 34(19):6459–6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yartsev MM, Witter MP, Ulanovsky N (2011) Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479(7371):103–107

    Article  CAS  PubMed  Google Scholar 

  • Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15(1 Pt 1):30–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoganarasimha D, Rao G, Knierim JJ (2011) Lateral entorhinal neurons are not spatially selective in cue-rich environments. Hippocampus 21(12):1363–1374

    Article  CAS  PubMed  Google Scholar 

  • Young BJ, Fox GD, Eichenbaum H (1994) Correlates of hippocampal complex-spike cell activity in rats performing a nonspatial radial maze task. J Neurosci 14(11 Pt 1):6553–6563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young WS, Li J, Wersinger SR, Palkovits M (2006) The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience 143(4):1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Zhang SJ, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D, Moser MB, Moser EI (2013) Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science 340(6128):1232627

    Article  PubMed  CAS  Google Scholar 

  • Zhang WN, Bast T, Feldon J (2001) The ventral hippocampus and fear conditioning in rats: different anterograde amnesias of fear after infusion of N-methyl-D-aspartate or its noncompetitive antagonist MK-801 into the ventral hippocampus. Behav Brain Res 126(1–2):159–174

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Choi YS, Obrietan K, Dudek SM (2007) Synaptic plasticity (and the lack thereof) in hippocampal CA2 neurons. J Neurosci 27(44):12025–12032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Lein ES, He A, Smith SC, Aston C, Gage FH (2001) Transcriptional profiling reveals strict boundaries between hippocampal subregions. J Comp Neurol 441(3):187–196

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Bieri KW, Hsiao YT, Colgin LL (2016) Spatial sequence coding differs during slow and fast gamma rhythms in the hippocampus. Neuron 89(2):398–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Bieri KW, Trettel SG, Colgin LL (2015) The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus 25(8):924–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, El Gamal A, Schnitzer MJ (2013) Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16(3):264–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank members of the Frank lab for their careful reviews and constructive comments on this book chapter. In particular, we thank Kenny Kay for the hippocampal recording data displayed in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loren M. Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sosa, M., Gillespie, A.K., Frank, L.M. (2016). Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. In: Clark, R.E., Martin, S. (eds) Behavioral Neuroscience of Learning and Memory. Current Topics in Behavioral Neurosciences, vol 37. Springer, Cham. https://doi.org/10.1007/7854_2016_462

Download citation

Publish with us

Policies and ethics