Skip to main content

A Survey of the Anatomy of the Hippocampal Formation, with Emphasis on the Septotemporal Organization of Its Intrinsic and Extrinsic Connections

  • Chapter
Excitatory Amino Acids and Epilepsy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 203))

Abstract

The hippocampal formation (HF) is composed of the hippocampus proper, i.e., the cornu Ammonis (CA) and the fascia dentata (FD), and the subiculum (Sub). Despite a rather extensive knowledge of its extrinsic and intrinsic connections, the functions of the HF are still an enigma. The suggestion has been made that the hippocampus contains a map of the external spatial environment, but also that it plays a more general role in memory and learning processes (O’Keefe and Nadel, 1978; Olton et al., 1982; Olton, 1983; Squire, 1983). A most relevant notion as regards the subject of this symposium is that the HF has long been implicated in temporal lobe epilepsy. Already in 1880, Sommer reported that many epileptic patients showed extensive loss of neurons, in particular in field CA1 of the CA. Recently, the anatomy of the hippocampal circuitry in relation to the occurrence of seizures has attracted special attention (Somogyi et al., 1983a, b). Although it appears that the basic circuitry is similar in all parts of the hippocampus, the present analysis of the topographical organization of the major intrinsic and extrinsic connections suggests that different parts along the septotemporal axis of the HF are connected with a different set of extra-hippocampal structures (Ruth et al., 1982; Roberts et al., 1984;. Witter and Groenewegen, 1984; Van Groen and Lopes da Silva, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral, D.G., 1978, A Golgi study of cell types in the hilar region of the hippocampus in the rat, J, Comm, Neurol., 182: 851.

    Google Scholar 

  • Amaral, D.G., and Cowan, W.M., 1980, Subcortical afferents to the hippocampal formation in the monkey, J. Comm. Neurol., 189: 573.

    Google Scholar 

  • Amaral, D.G., Insausti, R., and Cowan, W.M., 1984, The commissural connec-tions of the monkey hippocampal formation, J. Comm. Neurol., 224:307. Andersen, P., Bliss, T.V.P., and Skrede, K.K., 1971, Lamellar organization of hippocampal excitatory pathways, Exm. Brain Rea., 13: 222.

    Google Scholar 

  • Ashwood, T.J., Lancaster, B., and Wheal, H.V., 1984, In vivo and in vitro,studies on putative interneurons in the rat hippocampus: possiblemediators of feed-forward inhibition, Brain Res,, 293: 279.

    Article  PubMed  CAS  Google Scholar 

  • Azmitia, E.C., and Segal, M., 1978, An autoradiographic analysis of the differential ascending projections of the dorsal and the median raphenuclei in the rat, J. Comm. Neurol., 179: 641.

    Google Scholar 

  • Bakst, I., Morrison, J.H., and Amaral, D.G., 1985, The distribution of somatostatin-like immunoreactivity in the monkey hippocampal formation, J. Comm. Neurol., 236: 423.

    Google Scholar 

  • Berger, T.W., Swanson, G.W., Milner, T.A., Lynch, G.S., and Thompson, R.F., 1980, Reciprocal anatomical connections between hippocampus and subiculum in the rabbit: evidence for subicular innervation of regio superior, Brain Res., 183: 265.

    Article  PubMed  CAS  Google Scholar 

  • Blackstad, T.W., 1956, Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination, J. Comm. Neurol„ 105: 417.

    Google Scholar 

  • Blackstad, T.W., Brink, K., Hem, J., and Jeune, B., 1970, Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods, J. Como. Neurol,, 138: 433.

    Google Scholar 

  • Buzsaki, G., 1984, Feed-forward inhibition in the hippocampal formation, Progress in Neurobiol., 22: 131.

    Article  CAS  Google Scholar 

  • Chandler, J.P., and Crutcher, H.A., 1983, The septohippocampal projection in the rat: an electronmicroscopic horseradish peroxidase study, Neuroscience, 10: 685.

    Article  PubMed  CAS  Google Scholar 

  • Crunelli, V., and Segal, M., 1985, An electrophysiological study of neurones in the rat median raphe and their projections to septum and hippocampus, Neuroscience, 15: 47.

    Article  PubMed  CAS  Google Scholar 

  • Crutcher, H.A., Madison, R., and Davis, J.N., 1981, A study of the rat septohippocampal pathway using anterograde transport of horseradish peroxidase, Neuroscience, 6: 1961.

    Article  PubMed  CAS  Google Scholar 

  • Demeter, S., Rosene, D.L., and Van Hoesen, G.W., 1985, Interhemispheric pathways of the hippocampal formation, presubiculum and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures, J. Çomv. Neurol., 233: 30.

    Google Scholar 

  • Dent, J.A., Galvin, N.J., Stanfield, B.B., and Cowan, W.M., 1983, The mode of termination of the hypothalamic projection to the dentate gyrus: an EM autoradiographie study, Brain Res., 258: 1.

    Article  Google Scholar 

  • Fredens, K., Stengaard-Pedersen, K., and Larsson, L.I., 1984, Localization of enkephalin and cholecystokinin immunoreactivities in the perforant path terminal fields of the rat hippocampal formation, Brain Res., 304: 255.

    Article  PubMed  CAS  Google Scholar 

  • Fricke, R., and Cowan, W.M., 1978, Autoradiographic study of the commissural and ipsilateral hippocampal-dentate projections in the adult rat, J. Como. Neurol„ 181: 253.

    Google Scholar 

  • Frotscher, M., and Zimmer, J., 1983, Commissural fibers terminate on non-pyramidal neurons in the guinea pig hippocampus. A combined Golgi/EM degeneration study, Brain Res., 265: 289.

    Google Scholar 

  • Frotscher, M., Leranth, Cs., Lubbers, K., and Oertel, W.H., 1984, Commissural afferents innervate glutamate decarboxylase immunoreactive non-pyramidal neurons in the guinea pig hippocampus, Neurosci. Lett., 46: 137.

    Google Scholar 

  • Gage, F.H., and Thompson, R.G., 1980, Differential distribution of norepinephrine and serotonin along the dorso-ventral axis of the hippocampal formation, Brain Res. Bull., 5: 771.

    Google Scholar 

  • Gall, C., Brecha, N., Karten, H.J., and Chang, K. -J., 1981, Localization of enkephalin-like immunoreactivity to identified axonal and neuronal populations of the rat hippocampus, J. Como. Neurol., 198: 335.

    Google Scholar 

  • Gall, C., 1984, The distribution of cholecystokinin-like immunoreactivity in the hippocampal formation of the guinea pig: localization in the mossy fibers, Brain Res., 306: 73.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, D.I., and Cowan, W.M., 1973, Autoradiographic studies of the commissural and ipsilateral association connections of the hippocampus and dentate gyrus of the rat. I. The commissural connections, J. Como. Neurol,, 149: 393.

    Google Scholar 

  • Groenewegen, H.J., Arnolds, D.E.A.T., and Lopes da Silva, F.H., 1981, Afferent connections of the nucleus accumbens in the cat, with special emphasis on the projections from the hippocampal region. An anatomical and electrophysiological study, in: The Neurobiology of the Nucleus Acoumbens, R.B. Chronister, and J.F. De France, eds., Hear Institute for Electrophysiological Res., Brunswick, p. 41.

    Google Scholar 

  • Groenewegen, H.J., Room, P., Witter, M.P., and Lohman, A.H.M., 1982, Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques, Neuroscience, 7: 977.

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen, H.J., Haber, S.N., and Nauta, W.J.H., 1983, Structure and efferent connections of the interpeduncular nucleus in the rat. An immunohistochemical and neuroanatomical tracer study, Neurosci. Lett. Spool., 14: 145.

    Google Scholar 

  • Haglund, L., Swanson, L.W., and Köhler, C., 1984, The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat, J. Comp, Neurol., 229: 171.

    Google Scholar 

  • Herkenham, M., 1978, The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat, J. Comp. Neurol,, 177: 589.

    Google Scholar 

  • Hjorth-Simonsen, A., 1971, Hippocampal efferents to the ipsilateral entorhi- nal area: an experimental study in the rat, J. Comp. Neurol., 142: 417.

    Google Scholar 

  • Hjorth-Simonsen, A., and Jeune, B., 1972, Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation, J. Comp. Neurol., 144: 215.

    Google Scholar 

  • Kelley, A.B., and Domesick, V.B., 1982, The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat:an anterograde- and retrograde-horseradish peroxidase study, Neuroscience, 7: 2321.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, W.D., and Schwartzkroin, P.A., 1981, Local circuit synaptic interactions in hippocampal brain slices, J. Neurosci., 1: 318.

    PubMed  CAS  Google Scholar 

  • Köhler, C., and Steinbusch, H., 1982, Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain, Neuroscience, 7: 951.

    Google Scholar 

  • Köhler, C., 1983, A morphological analysis of vasoactive intestinal polypeptide (VIP)-like immunoreactive neurons in the area dentata of the rat brain, J. Comp. Neurol., 221: 247.

    Google Scholar 

  • Köhler, C., Haglund, L., and Swanson, L.W., 1984, A diffuse a-MSH-immunoreactive projection to the hippocampus and spinal cord from individualneurons in the lateral hypothalamic area and zona incerta, J. Comp. Neurol., 223: 501.

    Google Scholar 

  • Köhler, C., 1985, Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex, J. Çomp, Neurol., 236: 504.

    Google Scholar 

  • Kosel, K.C., Van Hoesen, G.W., and Rosene, D.L., 1983, A direct projection from the perirhinal cortex (area 35) to the subiculum in the rat, Brain. Res,, 269: 347.

    Google Scholar 

  • Krayniak, P.F., Siegel, A., Meibach, R.C., Fruchturan, D., and Scrimenti, M., 1979, Origin of the fornix system in the squirrel monkey, Brain. Res,,, 160: 401.

    Google Scholar 

  • Krayniak, P.F., Weiner, S., and Siegel, A., 1980, An analysis of the efferent connections of the septal area in the cat, Brain Rea., 189: 15.

    Article  CAS  Google Scholar 

  • Krettek, J.E., and Price, J.L., 1977, Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat, J. Comp. Neurol., 172: 723.

    Google Scholar 

  • Laurberg, S., 1979, Commissural and intrinsic connections of the rat hippo-campus, J. Comp. Neurol., 184: 685.

    Google Scholar 

  • Laurberg, S., and Sirensen, K.E., 1981, Associational and commissural collaterals of neurons in the hippocampal formation (hilus fascia dentatae and subfield CA3), Brain Res., 212: 287.

    Article  PubMed  CAS  Google Scholar 

  • Leichnetz, G.R., and Astruc, J., 1975, Efferent connections of the orbito- frontal cortex in the marmoset ( Saauinus oedipus ), Brain Res., 84: 169.

    Google Scholar 

  • Leichnetz, G.R., and Astruc, J., 1976, The efferent projections of the medial prefrontal cortex in the squirrel monkey ( Saimiri sciureus ), Brain Res., 109: 455.

    Google Scholar 

  • Leranth, Cs., and Frotscher. M., 1983, Commissural afferents to the rat hippocampus terminate on vasoactive intestinal polypeptide-like immunoreactive non-pyramidal neurons. An EM immunocytochemical degeneration study, Brain Res., 276: 357.

    Google Scholar 

  • Lopes da Silva, F.H., Arnolds, D.E.A.T., and Neijt, H.C., 1984, A functional link between the limbic cortex and ventral striatum: physiology of the subiculum accumbens pathway, Exp. Brain Res., 55: 205.

    Google Scholar 

  • Lopes da Silva, F.H., Groenewegen, H.J., Hoisheimer, J., Room, P., Witter, M.P., Van Groen, Th., and Wadman, W.J., 1985, The hippocampus as a set of partially overlapping segments with a topographically organized system of inputs and outputs: the entorhinal cortex as a sensory gate, the medial septum as a gain-setting system and the ventral striatum as a motor interface, in: Electrical Activity of the Archicortex,Buzsaki and C.H. VanderWolf, eds., Akademiai Kiado, Budapest, p. 83.

    Google Scholar 

  • Lorente de Nó, R., 1934, Studies on the structure of the cerebral cortex.Continuation of the study of the ammonic system, Psycho. Neurol., 46: 113.

    Google Scholar 

  • McNaughton, B.L., 1980, Evidence for two physiologically distinct perforant pathways to the fascia dentata, Brain Res., 199: 1.

    Article  PubMed  CAS  Google Scholar 

  • Meibach, R.C., and Siegel, A., 1977a, Efferent connections of the hippocampal formation in the rat, Brain Res., 124: 197.

    Article  PubMed  CAS  Google Scholar 

  • Meibach, R.C., and Siegel, A., 1977b, Thalamic projections of the hippocampal formation: evidence for an alternate pathway involving the internal capsule, Brain Res., 134: 1.

    Article  PubMed  CAS  Google Scholar 

  • Miles, R., Wong, R.K.S., and Traub, R.D., 1984, Synchronized afterdischarges in the hippocampus: contribution of local synaptic interactions, Neuroscience, 12: 1179.

    Article  PubMed  CAS  Google Scholar 

  • Monmaur, P., and Thomson, M.A., 1983, Topographic organization of septal cells innervating the dorsal hippocampal formation of the rat: special reference to both the CA1 and dentata theta generators, Exp. Neurol., 82: 366.

    Google Scholar 

  • Newman, R., and Winans, S.S., 1980, An experimental study of the ventral striatum of the golden hamster. I. Neuronal connections of the nucleus accumbens, J. Comp. Neurol., 191: 167.

    Google Scholar 

  • Nunzi, M.G., Gorio, A., Milan, F., Freund, T.F., Somogyi, P., and Smith, A.D., 1985, Cholecystokinin-immunoreactive cells form symmetrical synaptic contacts with pyramidal and nonpyramidal neurons in the hippocampus,J. Comp. Neurol., 237: 485.

    Google Scholar 

  • O’Keefe, J., and Nadel, L., 1978, The Hippocampus as a Cognitive Map, Clarendon Press, Oxford.

    Google Scholar 

  • Olton, D.S., Walker, J.A., and Wolf, W.A., 1982, A disconnection analysis of hippocampal function, Brain Res., 233: 241.

    Article  PubMed  CAS  Google Scholar 

  • Olton, D.S., 1983, Memory functions and the hippocampus, in: Neurobiology of the HipDO0amous, W. Seifert, ed., Academic Press, London, p. 335.

    Google Scholar 

  • Pasquier, D.A., and Reinoso-Suarez, F., 1976, Direct projections from hypothalamus to hippocampus in the rat demonstrated by retrograde transport of horseradish peroxidase, Brain Res,., 108: 165.

    Article  PubMed  CAS  Google Scholar 

  • Pasquier, D.A., and Reinoso-Suarez, F., 1977, Differential efferent connections of the brain stem to the hippocampus in the cat, Brain Res., 120: 540.

    Article  PubMed  CAS  Google Scholar 

  • Pasquier, D.A., and Reinoso-Suarez, F., 1978, The topographic organization of hypothalamic and brainstem projections to the hippocampus, Brain Res. Bull., 3: 373.

    Google Scholar 

  • Pohle, W., and Ott, T., 1984, Localization of entorhinal cortex neurons projecting to the dorsal hippocampal formation. A stereotaxic tool in three dimensions, J. Hirnforsch., 25: 661.

    Google Scholar 

  • Ribak, C.E., Vaughn, J.E., and Saito, K., 1978, Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport, Brain Res., 140: 315.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, G.W., Woodhams, P.L., Polak, J.M., and Crow, T.J., 1984, Distribution of neuropeptides in the limbic system of the rat: the hippocampus, Neuroscience, 11: 35.

    Article  PubMed  CAS  Google Scholar 

  • Room, P., Russchen, F.T., Groenewegen, H.J., and Lohman, A.H.M., 1985, Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices. An anterograde tracing study in the cat, J, Comp. Neurol., 242: 40.

    Google Scholar 

  • Room, P., and Groenewegen, H.J., 1986, Connections of the parahippocampal cortex in the cat. I. Cortical afferents, J. Comp. Neurol., in press.

    Google Scholar 

  • Rosene, D.L., and Van Hoesen, G.W., 1977, Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey, Science, 198: 315.

    Article  PubMed  CAS  Google Scholar 

  • Russchen, F.T., 1982, Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques, J. Comp, Neurol., 206: 159.

    Google Scholar 

  • Ruth, R.E., Collier, T.J., and Routtenberg, A., 1982, Topography between the entorhinal cortex and the dentate septotemporal axis in rats:I. Medial and intermediate entorhinal projecting cells, J. Comp. Neurol., 209: 69.

    Google Scholar 

  • Schwartzkroin, P.A., and Kunkel, D.D., 1985, Morphology of identified interneurons in the CA1 region of guinea pig hippocampus, J. Comp. Neurol., 232: 205.

    Google Scholar 

  • Schwerdtfeger, W.K., 1984, Structure and fiber connections of the hippocampus. A comparative study, Adv. Anat. Embrvol. Cell. Biol., 83: 1.

    Chapter  Google Scholar 

  • Segal, M., and Landis, S., 1974, Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase, Brain Res., 78: 1.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., 1979, A potent inhibitory monosynaptic hypothalamo-hippocampal connection, Brain Res., 162: 137.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, A., and Tassoni, J.P., 1971a, Differential efferent projections from the ventral and dorsal hippocampus of the cat, Brain Behay. Evol., 4: 185.

    Google Scholar 

  • Siegel, A., and Tassoni, J.P., 1971b, Differential efferent projections of the lateral and medial septal nuclei to the hippocampus in the cat, Brain Behay. Evol., 4: 201.

    Google Scholar 

  • Siegel, A., Edinger, H., and Ohgami, S., 1974, The topographical organization of the hippocampal projection to the septal area: a comparative neuro-anatomical analysis in the gerbil, rat, rabbit, and cat, J, Comp. Neurol., 157: 359.

    Google Scholar 

  • Somogyi, P., Nunzi, M.G., Gorio, A., and Smith, A.D., 1983a, A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells, Brain Res., 259: 137.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Smith, A.D., Nunzi, M.G., Gorio, A., Takagi, H., and Wu, J.Y., 1983b, Glutamate decarboxylase immunoreactivity in the hippocampus of the cat, J. Neurosci., 3: 1450.

    PubMed  CAS  Google Scholar 

  • Sorensen, K.E., and Shipley, M.T., 1979, Projections from the subiculum to the deep layers of the ipsilateral presubicular and entorhinal cortices in the guinea pig, J. Comp. Neurol., 188: 313.

    Google Scholar 

  • Squire, L.R., 1983, The hippocampus and the neuropsychology of memory, in: The Neurobiology of the Hippocampus, W. Seifert, ed., Academic Press, London, p. 491.

    Google Scholar 

  • Stanfield, R.B., Wyss, J.M., and Cowan, W.M., 1980, The projection of the supramammillary region upon the dentate gyrus in normal and reeler mice, Brain Res., 198: 196.

    Article  PubMed  CAS  Google Scholar 

  • Steward, 0., 1976, Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat, J. Comp. Neurol., 167: 285.

    Article  Google Scholar 

  • Steward, 0., and Scoville, S.A., 1976, Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat, J. Comp. Neurol., 169: 347.

    Google Scholar 

  • Struble, R.G., Desmond, N.L., and Levy, W.B., 1978, Anatomical evidence for interlamellar inhibition in the fascia dentata, Brain Res., 152: 580.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W., and Cowan, W.M., 1977, An autoradiographic study of the organzition of the efferent connections of the hippocampal formation in the rat, J. Comp. Neurol., 172: 49.

    Google Scholar 

  • Swanson, L.W., Wyss, J.M., and Cowan, W.M., 1978, An autoradiographic study of the organization of intrahippocampal association pathways in the rat, J. Comp. Neurol., 181: 681.

    Google Scholar 

  • Swanson, L.W., and Cowan, W.M., 1979, The connections of the septal region in the rat, J. Comp. Neurol., 186: 621.

    Google Scholar 

  • Swanson, L.W., Sawchenko, P.E., and Cowan, W.M., 1980, Evidence that the commissural, associational and septal projections of the regio inferior of the hippocampus arise from the same neurons, Brain Res., 197: 207.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W., 1981, A direct projection from Ammon’s horn to prefrontal cortex in the rat, Brain Res., 217: 150.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W., Sawchenko, P.E., and Cowan, W.M., 1981, Evidence for colla- teral projections by neurons in Ammon’s horn, the dentate gyrus and the subiculum. A multiple retrograde labeling study in the rat, J. Neuro-sci., 1: 548.

    Google Scholar 

  • Taxt, T., and Storm-Mathisen, J., 1984, Uptake of D-aspartate and L-glutamate in excitatory axon terminals in hippocampus: autoradiographic and biochemical comparison with y-aminobutyrate and other amino acids in normal rats and in rats with lesion, Neuroscience, 11: 79.

    Article  PubMed  CAS  Google Scholar 

  • Van Groen, Th., and Lopes da Silva, F.H., 1985, Septotemporal distribution of entorhinal projections to the hippocampus in the cat: electrophysiological evidence, J. Comp. Neurol., 238: 1.

    Google Scholar 

  • Van Groen, Th., and Witter, M.P., 1985, Electrophysiological and tracing study of the septotemporal distribution of entorhinal projections to the hippocampus in the cat, in: Electrical Activity of Archicortex, G. Buzsaki and C.H. VanderWolf, eds., Academiai Kiado, Budapest, p. 107.

    Google Scholar 

  • Van Groen, Th., and Lopes da Silva, F.H., 1986, The organization of the reciprocal connections between the subiculum and the entorhinal cortex in the cat. II. An electrophysiological study, J. Comp. Neurol., in press.

    Google Scholar 

  • Van Groen, Th., van Haren, F., Witter, M.P., and Groenewegen, H.J., 1986, The organization of the reciprocal connections between the subiculum and the entorhinal cortex in the cat. I. A neuroanatomical tracing study, J. Comp. Neurol., in press.

    Google Scholar 

  • Van Hoesen, G.W., and Pandya, D.N., 1975, Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections, Brain Res., 95: 39.

    Google Scholar 

  • Van Hoesen, G.W., Rosene, D.L., and Mesulam, M.-M., 1979, Subicular input from temporal cortex in the rhesus monkey, Science, 205: 608.

    Article  PubMed  Google Scholar 

  • Van Hoesen, G.W., 1982, The parahippocampal gyrus. New observations regarding its cortical connections in the monkey, TINS, 5: 345.

    Google Scholar 

  • Veazey, R.B., Amaral, D.G., and Cowan, W.M., 1982, The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). H. Efferent connections, J. Comp. Neurol., 207: 135.

    Google Scholar 

  • Vincent, S.R., McIntosh, C.H.S., Buchan, A.M.J., and Brown, J.G., 1985, Central somatostatin systems revealed with monoclonal antibodies, J. Comp. Neurol., 238: 169.

    Google Scholar 

  • Walaas, I., 1983, The hippocampus, in: Chemical Neuroanatomy, P.C. Emson, ed., Raven Press, New York, p. 337.

    Google Scholar 

  • Witter, M.P., and Groenewegen, H.J., 1984, Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat, J. Comp. Neurol., 224: 371.

    Google Scholar 

  • Witter, M.P., Room, P., Groenewegen, H.J., and Lohman, A.H.M., 1986, Connections of the parahippocampal cortex in the rat. V. Intrinsic connections; comments on input/output connections with the hippocampus, J. Comp. Neurol., in press.

    Google Scholar 

  • Wyss, J.M., Swanson, L.W., and Cowan, W.M., 1979a, A study of subcortical afferents to the hippocampal formation in the rat, Neuroscience, 4: 463.

    Article  PubMed  CAS  Google Scholar 

  • Wyss, J.M., Swanson, L.W., and Cowan, W.M., 1979b, Evidence for an input to the molecular layer and the stratum granulosum of the dentata gyrus from the supramammillary region of the hypothalamus, Anat. Embrvol., 156: 165.

    Google Scholar 

  • Wyss, J.M., 1981, An autoradiographic study of the efferent connections of the entorhinal cortex in the rat, J. Comp. Neurol., 199: 495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Witter, M.P. (1986). A Survey of the Anatomy of the Hippocampal Formation, with Emphasis on the Septotemporal Organization of Its Intrinsic and Extrinsic Connections. In: Schwarcz, R., Ben-Ari, Y. (eds) Excitatory Amino Acids and Epilepsy. Advances in Experimental Medicine and Biology, vol 203. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7971-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7971-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7973-7

  • Online ISBN: 978-1-4684-7971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics