Skip to main content

Brain Processes in Discounting: Consequences of Adolescent Methylphenidate Exposure

  • Chapter
  • First Online:
Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 9))

Abstract

Traits of inattention, impulsivity, and motor hyperactivity characterize children diagnosed with attention-deficit/hyperactivity disorder (ADHD), whose inhibitory control is reduced. In animal models, crucial developmental phases or experimental transgenic conditions account for peculiarities, such as sensation-seeking and risk-taking behaviors, and reproduce the beneficial effects of psychostimulants. An “impulsive” behavioral profile appears to emerge more extremely in rats when forebrain dopamine (DA) systems undergo remodeling, as in adolescence, or with experimental manipulation tapping onto the dopamine transporter (DAT). Ritalin® (methylphenidate, MPH), a DAT-blocking drug, is prescribed for ADHD therapy but is also widely abused by human adolescents. Administration of MPH during rats’ adolescence causes a long-term modulation of their self-control, in terms of reduced intolerance to delay and diminished proneness for risk when reward is uncertain. Exactly the opposite profile emerges when exogenous alteration of DAT levels is achieved via lentiviral transfection. Both adolescent MPH exposure and DAT-targeting transfection lead to enduring hyperfunction of dorsal striatum and hypofunction of ventral striatum. Together with upregulation of prefronto-cortical phospho-creatine, striatal upregulation of selected genes (like serotonin 7 receptor gene) suggests that enhanced inhibitory control is generated by adolescent MPH exposure. Operant tasks, which assess the balance between motivational drives and inhibitory self-control, are thus useful for investigating reward-discounting processes and their modulation by DAT-targeting tools. In summary, due to the complexity of human studies, preclinical investigations of rodent models are necessary to understand better both the neurobiology of ADHD-like symptoms’ etiology and the long-term therapeutic safety of adolescent MPH exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine (serotonin)

5-HT7:

5-Hydroxytryptamine (serotonin) receptor 7 (protein)

ADHD:

Attention-deficit/hyperactivity disorder

BOLD:

Blood-oxygen level-dependent

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

DA:

Dopamine

DAT:

Dopamine transporter

DBH:

Dopamine-β-hydroxylase

dStr:

Dorsal striatum

fMRI:

Functional magnetic resonance imaging

H-MRS:

Proton magnetic resonance spectroscopy

Htr7 :

5-Hydroxytryptamine (serotonin) receptor 7 (gene)

ID:

Intolerance-to-Delay (task)

mITI:

Mean inter-trial interval

MPH:

Methylphenidate

NAcc:

Nucleus accumbens

NET1:

Norepinephrine transporter (for uptake 1 (neuronal))

PD:

Probabilistic-Delivery (task)

PFC:

Prefrontal cortex

phMRI:

Pharmacological magnetic resonance imaging

pnd:

Postnatal day

RT:

Response time

RTT:

Response-time task

SERT:

Serotonin transporter

SNAP-25:

Synaptosomal-associated peptide-25

SSRI:

Selective serotonin reuptake inhibitor

TO:

Timeout

References

  • Accardo P, Blondis TA (2001) What’s all the fuss about Ritalin? J Pediatr 138:6–9

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Laviola G (2004) Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol 15:341–352

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Laviola G (2006) Delay aversion but preference for large and rare rewards in two choice tasks: implications for the measurement of self-control parameters. BMC Neurosci 7:52

    Article  PubMed  Google Scholar 

  • Adriani W, Leo D, Greco D, Rea M, di Porzio U, Laviola G, Perrone-Capano C (2006) Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression. Neuropsychopharmacology 31:1946–1956

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Canese R, Podo F, Laviola G (2007) 1H MRS-detectable metabolic brain changes and reduced impulsive behavior in adult rats exposed to methylphenidate during adolescence. Neurotoxicol Teratol 29:116–125

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Boyer F, Gioiosa L, Macrì S, Dreyer JL, Laviola G (2009) Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats’ nucleus accumbens. Neuroscience 159:47–58

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Boyer F, Leo D, Canese R, Podo F, Perrone-Capano C, Dreyer JL, Laviola G (2010a) Social withdrawal and gambling-like profile after lentiviral manipulation of DAT expression in the rat accumbens. Int J Neuropsychopharmacol 13:1329–42

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Zoratto F, Romano E, Laviola G (2010b) Cognitive impulsivity in animal models: role of response time and reinforcing rate in delay intolerance with two-choice operant tasks. Neuropharmacology 58:694–701

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  PubMed  CAS  Google Scholar 

  • Altabella L, Strolin S, Villani N, Zoratto F, Canese R (2011) Magnetic resonance imaging and spectroscopy in the study in ADHD syndrome: a short review. Biophys Bioeng Lett 4:23–34

    Google Scholar 

  • Ames A III (2000) CNS energy metabolism as related to function. Brain Res Rev 34:42–68

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Gazzara RA (1993) The ontogeny of apomorphine-induced alterations of neostriatal dopamine release: effects on spontaneous release. J Neurochem 61:2247–2255

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH (2000) Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 37:167–169

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Arvanitogiannis A, Pliakas AM, LeBlanc C, Carlezon WA Jr (2002) Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci 5:13–14

    Article  PubMed  CAS  Google Scholar 

  • Arnett J (1992) Reckless behavior in adolescence: a developmental perspective. Dev Rev 12:339–373

    Article  Google Scholar 

  • Arria AM, Wish ED (2006) Nonmedical use of prescription stimulant drugs among students. Pediatr Ann 35:565–571

    PubMed  Google Scholar 

  • Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27:8161–8165

    Article  PubMed  CAS  Google Scholar 

  • Banerjee PS, Aston J, Khundakar AA, Zetterström TS (2009) Differential regulation of psychostimulant-induced gene expression of brain derived neurotrophic factor and the immediate-early gene Arc in the juvenile and adult brain. Eur J Neurosci 29:465–476

    Article  PubMed  Google Scholar 

  • Barkley RA, Fischer M, Smallish L, Fletcher K (2003) Does the treatment of attention-deficit/hyperactivity disorder with stimulants contribute to drug use/abuse? A 13-year prospective study. Pediatrics 111:97–109

    Article  PubMed  Google Scholar 

  • Bava S, Jacobus J, Mahmood O, Yang TT, Tapert SF (2010) Neurocognitive correlates of white matter quality in adolescent substance users. Brain Cogn 72:347–354

    Article  PubMed  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 191:391–431

    Article  CAS  Google Scholar 

  • Blakemore SJ (2008) The social brain in adolescence. Nat Rev 9:267–277

    CAS  Google Scholar 

  • Bogle KE, Smith BH (2009) Illicit methylphenidate use: a review of prevalence, availability, pharmacology, and consequences. Curr Drug Abuse Rev 2:157–176

    Article  PubMed  Google Scholar 

  • Bolanos CA, Glatt SJ, Jackson D (1998) Subsensitivity to dopaminergic drugs in periadolescent rats: a behavioral and neurochemical analysis. Brain Res 111:25–33

    Article  CAS  Google Scholar 

  • Bolanos CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ (2003) Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol Psychiatry 54:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure P, Kelly L, Aluisio L, Shelton J, Lord B, Galici R, Miller K, Atack J, Lovenberg TW, Dugovic C (2007) Selective blockade of 5-hydroxytryptamine (5-HT) 7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J Pharmacol Exp Ther 321:690–698

    Article  PubMed  CAS  Google Scholar 

  • Botly LC, Burton CL, Rizos Z, Fletcher PJ (2008) Characterization of methylphenidate self-administration and reinstatement in the rat. Psychopharmacology (Berl) 199:55–66

    Article  CAS  Google Scholar 

  • Brandon CL, Steiner H (2003) Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur J Neurosci 18:1584–1592

    Article  PubMed  Google Scholar 

  • Brandon CL, Marinelli M, Baker LK, White FJ (2001) Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacology 25:651–661

    Article  PubMed  CAS  Google Scholar 

  • Brandon CL, Marinelli M, White FJ (2003) Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons. Biol Psychiatry 54:1338–1344

    Article  PubMed  CAS  Google Scholar 

  • Brenhouse HC, Andersen SL (2011) Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev 35:1687–703

    Article  PubMed  Google Scholar 

  • Britton GB, Segan AT, Sejour J, Mancebo SE (2007) Early exposure to methylphenidate increases fear responses in an aversive context in adult rats. Dev Psychobiol 49:265–75

    Article  PubMed  CAS  Google Scholar 

  • Burton CL, Nobrega JN, Fletcher PJ (2010) The effects of adolescent methylphenidate self-administration on responding for a conditioned reward, amphetamine-induced locomotor activity, and neuronal activation. Psychopharmacology (Berl) 208:455–68

    Article  CAS  Google Scholar 

  • Canales JJ (2005) Stimulant-induced adaptations in neostriatal matrix and striosome systems: transiting from instrumental responding to habitual behavior in drug addiction. Neurobiol Learn Mem 83:93–103

    Article  PubMed  CAS  Google Scholar 

  • Canese R, Adriani W, Marco EM, De Pasquale F, Lorenzini P, De Luca N, Fabi F, Podo F, Laviola G (2009) Peculiar response to methylphenidate in adolescent compared to adult rats: a phMRI study. Psychopharmacology (Berl) 203:143–53

    Article  CAS  Google Scholar 

  • Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ (2004) Limbic corticostriatal systems and delayed reinforcement. Ann N Y Acad Sci 1021:33–50

    Article  PubMed  Google Scholar 

  • Carlezon WA Jr, Mague SD, Andersen SL (2003) Enduring behavioral effects of early exposure to methylphenidate in rats. Biol Psychiatry 54:1330–1337

    Article  PubMed  CAS  Google Scholar 

  • Casey BJ, Jones RM, Hare TA (2008) The adolescent brain. Ann N Y Acad Sci 1124:111–126

    Article  PubMed  CAS  Google Scholar 

  • Challman TD, Lipsky JJ (2000) Methylphenidate: its pharmacology and uses. Mayo Clin Proc 75:711–721

    Article  PubMed  CAS  Google Scholar 

  • Chambers RA, Potenza MN (2003) Neurodevelopment, impulsivity, and adolescent gambling. J Gambl Stud 19:53–84

    Article  PubMed  Google Scholar 

  • Chambers RA, Taylor JR, Potenza MN (2003) Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry 160:1041–1052

    Article  PubMed  Google Scholar 

  • Chechik G, Meilijson I, Ruppin E (1999) Neuronal regulation: a mechanism for synaptic pruning during brain maturation. Neural Comput 11:2061–2080

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, Keltner JR, Beal MF, Rosen BR, Jenkins BG (1997) Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med 38:389–398

    Article  PubMed  CAS  Google Scholar 

  • Christakou A, Robbins TW, Everitt BJ (2001) Functional disconnection of a prefrontal cortical-dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behav Neurosci 115:812–825

    Article  PubMed  CAS  Google Scholar 

  • Christakou A, Robbins TW, Everitt BJ (2004) Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci 24:773–780

    Article  PubMed  CAS  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    Article  PubMed  CAS  Google Scholar 

  • Collins GB, Pippenger CE, Janesz JW (1984) Links in the chain: an approach to the treatment of drug abuse on a professional football team. Cleve Clin Q 51:485–92

    PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  CAS  Google Scholar 

  • De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, Masalehdan A, Noll J, Boring AM (2001) Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 11:552–557

    Article  PubMed  Google Scholar 

  • Dixon AL, Prior M, Morris PM, Shah YB, Joseph MH, Young AM (2005) Dopamine antagonist modulation of amphetamine response as detected using pharmacological MRI. Neuropharmacology 48:236–245

    Article  PubMed  CAS  Google Scholar 

  • Doremus-Fitzwater TL, Varlinskaya EI, Spear LP (2010) Motivational systems in adolescence: Possible implications for age differences in substance abuse and other risk-taking behaviors. Brain Cogn 72:114–123

    Article  PubMed  Google Scholar 

  • Easton N, Shah YB, Marshall FH, Fone KC, Marsden CA (2006) Guanfacine produces differential effects in frontal cortex compared with striatum: assessed by phMRI BOLD contrast. Psychopharmacology (Berl) 189:369–385

    Article  CAS  Google Scholar 

  • Easton N, Marshall F, Fone K, Marsden C (2007) Atomoxetine produces changes in cortico-basal thalamic loop circuits: assessed by phMRI BOLD contrast. Neuropharmacology 52:812–826

    Article  PubMed  CAS  Google Scholar 

  • Eshel N, Nelson EE, Blair RJ, Pine DS, Ernst M (2007) Neural substrates of choice selection in adults and adolescents: development of the ventrolateral prefrontal and anterior cingulate cortices. Neuropsychologia 45:1270–1279

    Article  PubMed  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361

    Article  CAS  Google Scholar 

  • Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl) 128:161–170

    Article  CAS  Google Scholar 

  • Fareri DS, Martin LN, Delgado MR (2008) Reward-related processing in the human brain: developmental considerations. Dev Psychopathol 20:1191–211

    Article  PubMed  Google Scholar 

  • Febo M, Segarra AC, Nair G, Schmidt K, Duong TQ, Ferris CF (2005) The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsychopharmacology 30:936–943

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA, Boctor SY (2010) Cocaine responsiveness or anhedonia in rats treated with methylphenidate during adolescence. Neurotoxicol Teratol 32:432–442

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Tenn CC, Sinyard J, Rizos Z, Kapur S (2007) A sensitizing regimen of amphetamine impairs visual attention in the 5-choice serial reaction time test: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Neuropsychopharmacology 32:1122–1132

    Article  PubMed  CAS  Google Scholar 

  • Frahm J, Kruger G, Merboldt KD, Kleinschmidt A (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35:143–148

    Article  PubMed  CAS  Google Scholar 

  • Gadian DG (1995) NMR and its applications to living systems. Oxford University Press, Oxford

    Google Scholar 

  • Giedd JN (2008) The teen brain: insights from neuroimaging. J Adolesc Health 42:335–343

    Article  PubMed  Google Scholar 

  • Guscott M, Bristow LJ, Hadingham K, Rosahl TW, Beer MS, Stanton JA, Bromidge F, Owens AP, Huscroft I, Myers J, Rupniak NM, Patel S, Whiting PJ, Hutson PH, Fone KC, Biello SM, Kulagowski JJ, McAllister G (2005) Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology 48:492–502

    Article  PubMed  CAS  Google Scholar 

  • Harel N, Lee SP, Nagaoka T, Kim DS, Kim SG (2002) Origin of negative blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 22:908–917

    Article  PubMed  Google Scholar 

  • Hastjarjo T, Silberberg A, Hursh SR (1990) Risky choice as a function of amount and variance in food supply. J Exp Anal Behav 53:155–61

    Article  PubMed  CAS  Google Scholar 

  • Hechtman L, Greenfield B (2003) Long-term use of stimulants in children with attention deficit hyperactivity disorder: safety, efficacy, and long-term outcome. Paediatr Drugs 5:787–794

    Article  PubMed  Google Scholar 

  • Herpertz SC, Sass H (2000) Emotional deficiency and psychopathy. Behav Sci Law 18:567–580

    Article  PubMed  CAS  Google Scholar 

  • Hewitt KN, Shah YB, Prior MJ, Morris PG, Hollis CP, Fone KC, Marsden CA (2005) Behavioural and pharmacological magnetic resonance imaging assessment of the effects of methylphenidate in a potential new rat model of attention deficit hyperactivity disorder. Psychopharmacology (Berl) 180:716–723

    Article  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41

    Article  PubMed  CAS  Google Scholar 

  • Kallman WM, Isaac W (1975) The effects of age and illumination on the dose-response curves for three stimulants. Psychopharmacologia 40:313–318

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 269:58–72

    Article  PubMed  CAS  Google Scholar 

  • Kaminski BJ, Ator NA (2001) Behavioral and pharmacological variables affecting risky choice in rats. J Exp Anal Behav 75:275–97

    Article  PubMed  CAS  Google Scholar 

  • Kellogg CK, Awatramani GB, Piekut DT (1998) Adolescent development alters stressor-induced Fos immunoreactivity in rat brain. Neuroscience 83:681–689

    Article  PubMed  CAS  Google Scholar 

  • Klein-Schwartz W, McGrath J (2003) Poison centers’ experience with methylphenidate abuse in pre-teens and adolescents. J Am Acad Child Adolesc Psychiatry 42:288–94

    Article  PubMed  Google Scholar 

  • Laviola G, Wood RD, Kuhn C, Francis R, Spear LP (1995) Cocaine sensitization in periadolescent and adult rats. J Pharmacol Exp Ther 275:345–357

    PubMed  CAS  Google Scholar 

  • Laviola G, Adriani W, Terranova ML, Gerra G (1999) Psychobiological risk factors for vulnerability to psychostimulants in human adolescents and animal models. Neurosci Biobehav Rev 23:993–1010

    Article  PubMed  CAS  Google Scholar 

  • Laviola G, Macri S, Morley-Fletcher S, Adriani W (2003) Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neurosci Biobehav Rev 27:19–31

    Article  PubMed  Google Scholar 

  • Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 40:1044–1055

    Article  PubMed  CAS  Google Scholar 

  • Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729

    Article  PubMed  Google Scholar 

  • Leo D, Adriani W, Cavaliere C, Cirillo G, Marco EM, Romano E, di Porzio U, Papa M, Perrone-Capano C, Laviola G (2009) Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: implications for impulsive behavior and neuronal morphology. Genes Brain Behav 8:356–68

    Article  PubMed  CAS  Google Scholar 

  • Levin FR, Kleber HD (1995) Attention-deficit hyperactivity disorder and substance abuse: relationships and implications for treatment. Harvard Rev Psychiatry 2:246–258

    Article  CAS  Google Scholar 

  • Levy F, Swanson JM (2001) Timing, space and ADHD: the dopamine theory revisited. Aust N Z J Psychiatry 35:504–511

    Article  PubMed  CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Rakic P (1991) Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. Proc Natl Acad Sci U S A 88:10218–10221

    Article  PubMed  CAS  Google Scholar 

  • Lockwood CA, Menter CG, Moggi-Cecchi J, Keyser AW (2007) Extended male growth in a fossil hominin species. Science 318:1443–1446

    Article  PubMed  CAS  Google Scholar 

  • Marco EM, Adriani W, Ruocco LA, Canese R, Sadile AG, Laviola G (2011) Neurobehavioral adaptations to methylphenidate: the issue of early adolescent exposure. Neurosci Biobehav Rev 35:1722–39

    Article  PubMed  CAS  Google Scholar 

  • Marota JJ, Mandeville JB, Weisskoff RM, Moskowitz MA, Rosen BR, Kosofsky BE (2000) Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in Rat. NeuroImage 11:13–23

    Article  PubMed  CAS  Google Scholar 

  • McCabe SE, Teter CJ, Boyd CJ, Guthrie SK (2004) Prevalence and correlates of illicit methylphenidate use among 8th, 10th, and 12th grade students in the United States, 2001. J Adolesc Health 35:501–504

    PubMed  Google Scholar 

  • Meaney MJ, Stewart J (1981) Neonatal-androgens influence the social play of prepubescent rats. Horm Behav 15:197–213

    Article  PubMed  CAS  Google Scholar 

  • Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000) Effects of central 5-hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl) 152:390–397

    Article  CAS  Google Scholar 

  • Morrissey G, Wogar MA, Bradshaw CM, Szabadi E (1993) Effect of lesions of the ascending 5-hydroxytryptaminergic pathways on timing behaviour investigated with an interval bisection task. Psychopharmacology (Berl) 112:80–85

    Article  CAS  Google Scholar 

  • Muramoto S, Yamada H, Sadato N, Kimura H, Konishi Y, Kimura K, Tanaka M, Kochiyama T, Yonekura Y, Ito H (2002) Age-dependent change in metabolic response to photic stimulation of the primary visual cortex in infants: functional magnetic resonance imaging study. J Comput Assist Tomogr 26:894–901

    Article  PubMed  Google Scholar 

  • Nemoda Z, Szekely A, Sasvari-Szekely M (2011) Psychopathological aspects of dopaminergic gene polymorphisms in adolescence and young adulthood. Neurosci Biobehav Rev 35:1665–86

    Article  PubMed  CAS  Google Scholar 

  • Nightingale EO, Fischhoff B (2002) Adolescent risk and vulnerability: overview. J Adolesc Health 31:3–9

    Article  PubMed  Google Scholar 

  • Panksepp J (1981) The ontogeny of play in rats. Dev Psychobiol 14:327–332

    Article  PubMed  CAS  Google Scholar 

  • Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31:159–173

    Article  PubMed  CAS  Google Scholar 

  • Patrick KS, Markowitz JS (1997) Pharmacology of methylphenidate, amphetamine enantiomers, and penoline in attention deficit/hyperactivity disorder. Hum Psychopharmacol 12:527–546

    Article  CAS  Google Scholar 

  • Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL, Evans AC (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911

    Article  PubMed  CAS  Google Scholar 

  • Preece MA, Sibson NR, Raley JM, Blamire A, Styles P, Sharp T (2007) Region-specific effects of a tyrosine-free amino acid mixture on amphetamine-induced changes in BOLD fMRI signal in the rat brain. Synapse 61:925–932

    Article  PubMed  CAS  Google Scholar 

  • Ptacek R, Kuzelova H, Paclt I, Zukov I, Fischer S (2009) ADHD and growth: anthropometric changes in medicated and non-medicated ADHD boys. Med Sci Monit 15:CR595–599

    PubMed  Google Scholar 

  • Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen P Jr, Sirvio J (1996) Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol Learn Mem 66:198–211

    Article  PubMed  CAS  Google Scholar 

  • Ragozzino ME (2003) Acetylcholine actions in the dorsomedial striatum support the flexible shifting of response patterns. Neurobiol Learn Mem 80:257–267

    Article  PubMed  CAS  Google Scholar 

  • Rebec GV, Christiansen JRC, Guerra C, Bardo MT (1997a) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61–67

    Article  PubMed  CAS  Google Scholar 

  • Rebec GV, Grabner CP, Johnson M, Pierce RC, Bardo MT (1997b) Transient increases in cathecolaminergic activity in medial prefrontal cortex and nucleus accumbens shell during novelty. Neuroscience 76:707–714

    Article  PubMed  CAS  Google Scholar 

  • Rogers RD, Baunez C, Everitt BJ, Robbins TW (2001) Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behav Neurosci 115:799–811

    Article  PubMed  CAS  Google Scholar 

  • Romani C, Adriani W, Manciocco A, Vitale A, Laviola G (2010) Evaluation of impulsive behaviour in Callithrix jacchus: a pilot study. In: Abstract Book, V European Conference on Behavioural Biology (ECBB), Ferrara, Italy, July 15–18, p 126

    Google Scholar 

  • Rother J, Knab R, Hamzei F, Fiehler J, Reichenbach JR, Buchel C, Weiller C (2002) Negative dip in BOLD fMRI is caused by blood flow-oxygen consumption uncoupling in humans. NeuroImage 15:98–102

    Article  PubMed  Google Scholar 

  • Sadile AG, Pellicano MP, Sagvolden T, Sergeant JA (1996) NMDA and non-NMDA sensitive [L-3H]glutamate receptor binding in the brain of the Naples high- and low-excitability rats: an autoradiographic study. Behav Brain Res 78:163–174

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Pettersen MB, Larsen MC (1993) Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav 54:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41

    Article  PubMed  CAS  Google Scholar 

  • Scheffler RM, Hinshaw SP, Modrek S, Levine P (2007) The global market for ADHD medications. Health Aff (Millwood) 26:450–457

    Article  Google Scholar 

  • Schepis TS, Adinoff B, Rao U (2008) Neurobiological processes in adolescent addictive disorders. Am J Addict 17:6–23

    Article  PubMed  Google Scholar 

  • Schmithorst VJ, Yuan W (2010) White matter development during adolescence as shown by diffusion MRI. Brain Cogn 72:16–25

    Article  PubMed  Google Scholar 

  • Seeman P, Madras BK (1998) Anti-hyperactivity medication: methylphenidate & amphetamine. Mol Psychiatry 3:386–396

    Article  PubMed  CAS  Google Scholar 

  • Self DW (2004) Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology 47:242–255

    Article  PubMed  CAS  Google Scholar 

  • Shen RY, Choong KC (2006) Different adaptation in ventral tegmental dopamine neurons in control vs ethanol exposed rats after methylphenidate treatment. Biol Psychiatry 59:635–642

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  PubMed  CAS  Google Scholar 

  • Sicard KM, Duong TQ (2005) Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. NeuroImage 25:850–858

    Article  PubMed  Google Scholar 

  • Sonuga-Barke EJ (2005) Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 57:1231–1238

    Article  PubMed  Google Scholar 

  • Sowell ER, Delis D, Stiles J, Jernigan TL (2001) Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. J Int Neuropsychol Soc 7:312–322

    Article  PubMed  CAS  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    Article  PubMed  CAS  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  PubMed  CAS  Google Scholar 

  • Spear LP, Brake SC (1983) Periadolescence: age-dependent behavior and psycho-pharmacological responsivity in rats. Dev Psychobiol 16:83–109

    Article  PubMed  CAS  Google Scholar 

  • Stamford JA (1989) Development and ageing of the rat nigrostriatal dopamine system studied with fast cyclic voltammetry. J Neurochem 52:1582–1589

    Article  PubMed  CAS  Google Scholar 

  • Stephens DW, Anderson D (2001) The adaptive value of preference for immediacy: when shortsighted rules have farsighted consequences. Behav Ecol 12:330–339

    Article  Google Scholar 

  • Svetlov SI, Kobeissy FH, Gold MS (2007) Performance enhancing, non-prescription use of Ritalin: a comparison with amphetamines and cocaine. J Addict Dis 26:1–6

    Article  PubMed  Google Scholar 

  • Tarazi FI, Tomasini EC, Baldessarini RJ (1998) Postnatal development of dopamine D4-like receptors in rat forebrain regions: comparison with D2-like receptors. Brain Res 110:227–233

    Article  CAS  Google Scholar 

  • Tarazi FI, Tomasini EC, Baldessarini RJ (1999) Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: An autoradiographic study. Dev Neurosci 21:43–49

    Article  PubMed  CAS  Google Scholar 

  • Teicher MH, Andersen SL, Hostetter JC Jr (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res 89:167–172

    Article  CAS  Google Scholar 

  • Terranova ML, Laviola G, Alleva E (1993) Ontogeny of amicable social behavior in the mouse: gender differences and ongoing isolation outcomes. Dev Psychobiol 26:467–481

    Article  PubMed  CAS  Google Scholar 

  • Terranova ML, Laviola G, de Acetis L, Alleva E (1998) A description of the ontogeny of mouse agonistic behavior. J Comp Psychol 112:3–12

    Article  PubMed  CAS  Google Scholar 

  • Tirelli E, Laviola G, Adriani W (2003) Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neurosci Biobehav Rev 27:163–178

    Article  PubMed  Google Scholar 

  • Vendruscolo LF, Izídio GS, Takahashi RN, Ramos A (2008) Chronic methylphenidate treatment during adolescence increases anxiety-related behaviors and ethanol drinking in adult spontaneously hypertensive rats. Behav Pharmacol 19:21–27

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Swanson JM (2003) Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am J Psychiatry 160:1909–18

    Article  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Dewey SL, Hitzemann R, Gifford AN, Pappas NR (1999) Blockade of striatal dopamine transporters by intravenous methylphenidate is not sufficient to induce self-reports of “high”. J Pharmacol Exp Ther 288:14–20

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:RC121

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, Ding YS, Gatley SJ, Gifford A, Zhu W, Swanson JM (2002) Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 43:181–187

    Article  PubMed  CAS  Google Scholar 

  • White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 51:141–153

    Article  PubMed  CAS  Google Scholar 

  • Wilens TE, Adler LA, Adams J, Sgambati S, Rotrosen J, Sawtelle R, Utzinger L, Fusillo S (2008) Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. J Am Acad Child Adolesc Psychiatry 47:21–31

    Article  PubMed  Google Scholar 

  • Wills TA, Vaccaro D, McNamara G (1994) Novelty seeking, risk taking, and related constructs as predictors of adolescent substance use: an application of Cloninger’s theory. J Subst Abuse 6:1–20

    Article  PubMed  CAS  Google Scholar 

  • Wills TA, Sandy JM, Shinar O (1999) Cloninger’s constructs related to substance use level and problems in late adolescence: a mediational model based on self-control and coping motives. Exp Clin Psychopharmacol 7:122–134

    Article  PubMed  CAS  Google Scholar 

  • Wogar MA, Bradshaw CM, Szabadi E (1993) Does the effect of central 5-hydroxytryptamine depletion on timing depend on motivational change? Psychopharmacology (Berl) 112:86–92

    Article  CAS  Google Scholar 

  • Wolf ME, Sun X, Mangiavacchi S, Chao SZ (2004) Psychomotor stimulants and neuronal plasticity. Neuropharmacology 47:61–79

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Steiner H (2005) Methylphenidate (Ritalin) induces Homer1a and zif268 expression in specific corticostriatal circuits. Neuroscience 132:855–865

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Steiner H (2007) Methylphenidate and cocaine: the same effects on gene regulation? Trends Pharmacol Sci 28:588–596

    Article  PubMed  CAS  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189

    Article  PubMed  Google Scholar 

  • Zuckerman M (1984) Sensation seeking: a comparative approach to a human trait. Behav Brain Sci 7:413–471

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the “ADHD-sythe” young-investigator grant and by the “NeuroGenMRI” ERAnet project, “Prio-Med-Child” call (to WA), Italian Ministry of Health; ERARE-EuroRETT Network ERAR/6 (to GL). The authors wish to thank the European Mind and Metabolism Association (EMMA, www.emmaweb.org), L.T. Bonsignore and N. Francia for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Adriani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adriani, W., Zoratto, F., Laviola, G. (2011). Brain Processes in Discounting: Consequences of Adolescent Methylphenidate Exposure. In: Stanford, C., Tannock, R. (eds) Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment. Current Topics in Behavioral Neurosciences, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_156

Download citation

Publish with us

Policies and ethics