Skip to main content

Evaluation of Blood-Brain Barrier Integrity Using Vascular Permeability Markers: Evans Blue, Sodium Fluorescein, Albumin-Alexa Fluor Conjugates, and Horseradish Peroxidase

  • Protocol
  • First Online:
Permeability Barrier

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2367))

Abstract

The blood-brain barrier (BBB) constituted by endothelial cells of brain microvessels is a dynamic interface, which controls and regulates the transport of various substances including peptides, proteins, ions, vitamins, hormones, and immune cells from the circulation into the brain parenchyma. Certain diseases/disorders such as Alzheimer’s disease, sepsis, and hypertension can lead to varying degrees of BBB disruption. Moreover, impairment of BBB integrity has been implicated in the pathogenesis of various neurodegenerative diseases like epilepsy. In attempts to explore the wide spectrum of pathophysiologic mechanisms of these diseases/disorders, a variety of experimental insults targeted to the BBB integrity in vitro in cell culture models and in vivo in laboratory animals have been shown to alter BBB permeability causing enhanced transport of certain tracers such as sodium fluorescein, cadaverine-Alexa fluor, horseradish peroxidase, FITC-dextran, albumin-Alexa fluor conjugates, and Evans blue dye across the barrier. The permeability changes in barrier-type endothelial cells can be assessed by intravascular infusion of exogenous tracers and subsequent detection of the extravasated tracer in the brain tissue, which enable functional and structural analysis of BBB integrity. In this chapter, we aimed to highlight the current knowledge on the use of four most commonly performed tracers, namely, Evans blue, sodium fluorescein, albumin-Alexa fluor conjugates, and horseradish peroxidase. The experimental methodologies that we use in our laboratory for the detection of these tracers by macroscopy, spectrophotometry, spectrophotofluorometry, confocal laser scanning microscopy, and electron microscopy are also discussed. Tracing studies at the morphological level are mainly aimed at the identification of the tracers both in the barrier-related cells and brain parenchyma. In addition, BBB permeability to the tracers can be quantified using spectrophotometric and spectrophotofluorometric assays and image analysis by confocal laser scanning microscopy and electron microscopy. The results of our studies conducted under various experimental settings using the mentioned tracers indicate that barrier-type endothelial cells in brain microvessels orchestrate the paracellular and/or transcellular trafficking of substances across BBB. These efforts may not only contribute to designing approaches for the management of diseases/disorders associated with BBB breakdown but may also provide new insights for developing novel brain drug delivery strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daneman R, Engelhardt B (2017) Brain barriers in health and disease. Neurobiol Dis 107:1–3. https://doi.org/10.1016/j.nbd.2017.05.008

    Article  PubMed  Google Scholar 

  2. Keep RF, Jones HC, Drewes LR (2019) This was the year that was: brain barriers and brain fluid research in 2019. Fluids Barriers CNS 17(1):20. https://doi.org/10.1186/s12987-020-00181-9

    Article  Google Scholar 

  3. Neuwelt EA, Abbott NJ, Drewes L et al (1999) Cerebrovascular biology and the various neural barriers: challenges and future directions. Neurosurgery 44:604–608. https://doi.org/10.1097/00006123-199903000-00095

    Article  CAS  PubMed  Google Scholar 

  4. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the BBB. Nat Rev Neurosci 7:1–53. https://doi.org/10.1038/nrn1824

    Article  CAS  Google Scholar 

  5. Shah K, Abbruscato T (2017) The blood-brain barrier: a restricted gateway to the brain. In: Conn PM (ed) Conn’s translational neuroscience. Chapter 6. Academic Press, Cambridge, pp 141–146

    Chapter  Google Scholar 

  6. Gloor SM, Wachtel M, Bolliger MF et al (2001) Molecular and cellular permeability control at the BBB. Brain Res Brain Res Rev 36:258–264. https://doi.org/10.1016/s0165-0173(01)00102-3

    Article  CAS  PubMed  Google Scholar 

  7. Abbott NJ, Patabendige AA, Dolman DE et al (2010) Structure and function of the BBB. Neurobiol Dis 37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  8. Correale J, Villa A (2009) Cellular elements of the BBB. Neurochem Res 34:2067–2077. https://doi.org/10.1007/s11064-009-0081-y

    Article  CAS  PubMed  Google Scholar 

  9. Sharif Y, Jumah F, Coplan L et al (2018) Blood-brain barrier: a review of its anatomy and physiology in health and disease. Clin Anat 31(6):812–823. https://doi.org/10.1002/ca.23083

    Article  PubMed  Google Scholar 

  10. Alexander JJ (2018) Blood-brain barrier (BBB) and the complement landscape. Mol Immunol 102:26–31. https://doi.org/10.1016/j.molimm.2018.06.267

    Article  CAS  PubMed  Google Scholar 

  11. Ayloo S, Gu C (2019) Transcytosis at the BBB. Curr Opin Neurobiol 57:32–38. https://doi.org/10.1016/j.conb.2018.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–667. https://doi.org/10.1083/jcb.40.3.648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greene C, Campbell M (2016) Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers 4(1):e1138017. https://doi.org/10.1080/21688370.2015.1138017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reinhold AK, Rittner HL (2017) Barrier function in the peripheral and central nervous system-a review. Pflugers Arch 469(1):123–134. https://doi.org/10.1007/s00424-016-1920-8

    Article  CAS  PubMed  Google Scholar 

  15. Ek CJ, Habgood MD, Dziegielewska KM et al (2001) Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica. J Physiol 536:841–853. https://doi.org/10.1111/j.1469-7793.2001.00841.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932. https://doi.org/10.1152/physrev.00001.2003

    Article  CAS  PubMed  Google Scholar 

  17. Strbian D, Durukan A, Pitkonen M et al (2008) The BBB is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 153:175–181. https://doi.org/10.1016/j.neuroscience.2008.02.012

    Article  CAS  PubMed  Google Scholar 

  18. Winkler L, Blasig R, Breitkreuz-Korff O et al (2020) Tight junctions in the BBB promote edema formation and infarct size in stroke – ambivalent effects of sealing proteins. J Cereb blood flow Metab 271678X20904687. https://doi.org/10.1177/0271678X20904687

  19. Kaya M, Kalayci R, Küçük M et al (2003) Effect of losartan on the BBB permeability in diabetic hypertensive rats. Life Sci 73:3235–3244. https://doi.org/10.1016/j.lfs.2003.06.014

    Article  CAS  PubMed  Google Scholar 

  20. Atış M, Akcan U, Uğur Yılmaz C et al (2019) Effects of methyl-beta-cyclodextrin on blood-brain barrier permeability in angiotensin II-induced hypertensive rats. Brain Res 1715:148–155. https://doi.org/10.1016/j.brainres.2019.03.024

    Article  CAS  PubMed  Google Scholar 

  21. Orhan N, Ugur Yilmaz C, Ekizoglu O et al (2016) Effects of beta-hydroxybutyrate on brain vascular permeability in rats with traumatic brain injury. Brain Res 1631:113–126. https://doi.org/10.1016/j.brainres.2015.11.038

    Article  CAS  PubMed  Google Scholar 

  22. Sahin D, Yilmaz CU, Orhan N et al (2017) Changes in electroencephalographic characteristics and BBB permeability in WAG/Rij rats with cortical dysplasia. Epilepsy Behav 67:70–76. https://doi.org/10.1016/j.yebeh.2016.11.001

    Article  PubMed  Google Scholar 

  23. Mendes NF, Pansani AP, Carmanhães ERF et al (2019) The BBB breakdown during acute phase of the pilocarpine model of epilepsy is dynamic and time-dependent. Front Neurol 10:382. https://doi.org/10.3389/fneur.2019.00382

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kaya M, Palanduz A, Kalayci R et al (2004) Effects of lipopolysaccharide on the radiation-induced changes in the BBB and the astrocytes. Brain Res 1019:105–112. https://doi.org/10.1016/j.brainres.2004.05.102

    Article  CAS  PubMed  Google Scholar 

  25. Saunders NR, Dziegielewska KM, Møllgård K et al (2015) Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci 9:385. https://doi.org/10.3389/fnins.2015.00385

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wolman M, Klatzo I, Chui E et al (1981) Evaluation of the dye-protein tracer in pathophysiology of the BBB. Acta Neuropathol (Berl) 54:55–61. https://doi.org/10.1007/BF00691332

    Article  CAS  Google Scholar 

  27. Clasen RA, Pandolfi S, Hass GM (1970) Vital staining, serum albumin and the BBB. J Neuropathol Exp Neurol 29:266–284

    Article  CAS  PubMed  Google Scholar 

  28. Zuccarello M, Anderson DK (1989) Protective effect of a 21-aminosteroid on the BBB following subarachnoid hemorrhage in rats. Stroke 20:367–371. https://doi.org/10.1161/01.str.20.3.367

    Article  CAS  PubMed  Google Scholar 

  29. Kaya M, Küçük M, Kalaycı R et al (2001) Magnesium sulfate attenuates increased BBB permeability during insulin-induced hypoglycemia in rats. Can J Physiol Pharmacol 79:793–798. https://doi.org/10.1139/cjpp-79-9-793

    Article  CAS  PubMed  Google Scholar 

  30. Esen F, Erdem T, Aktan D et al (2005) Effect of magnesium sulfate administration on blood–brain barrier in a rat model of intraperitoneal sepsis: a randomized controlled experimental study. Crit Care 9:R18–R23. https://doi.org/10.1186/cc3004

    Article  PubMed  Google Scholar 

  31. Kuts R, Frank D, Gruenbaum BF et al (2019) A novel method for assessing cerebral edema, infarcted zone and BBB breakdown in a single post-stroke rodent brain. Front Neurosci 13:1105. https://doi.org/10.3389/fnins.2019.01105

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lo WD, McNeely DL, Boesel CW (1991) BBB permeability in an experimental model of bacterial cerebritis. Neurosurgery 29:888–892. https://doi.org/10.1097/00006123-199112000-00014

    Article  CAS  PubMed  Google Scholar 

  33. Akiyama H, Kondoh T, Kokunai T et al (2000) BBB formation of grafted human umbilical vein endothelial cells in athymic mouse brain. Brain Res 858:172–176. https://doi.org/10.1016/s0006-8993(99)02471-3

    Article  CAS  PubMed  Google Scholar 

  34. Beach VL, Steinetz BG (1961) Quantitative measurement of Evans blue space in the tissues of the rat: influence of 5-hydroxytryptamine antagonists and phenelzine on experimental inflammation. J Pharmacol Exp Ther 131:400–406

    CAS  PubMed  Google Scholar 

  35. Mikawa S, Kinouchi H, Kamii H et al (1996) Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J Neurosurg 85:885–891. https://doi.org/10.3171/jns.1996.85.5.0885

    Article  CAS  PubMed  Google Scholar 

  36. Saria A, Lundberg JM (1983) Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods 8:41–49. https://doi.org/10.1016/0165-0270(83)90050-x

    Article  CAS  PubMed  Google Scholar 

  37. Sun SW, Nishioka C, Chung CF et al (2017) Anterograde-propagation of axonal degeneration in the visual system of wlds mice characterized by diffusion tensor imaging. J Magn Reson Imaging 45(2):482–491. https://doi.org/10.1002/jmri.25368

    Article  PubMed  Google Scholar 

  38. Salem H, Loux JJ, Sandra Smith S et al (1979) Evaluation of the toxicologic and teratogenic potentials of sodium fluorescein in the rat. Toxicology 12(2):143–150. https://doi.org/10.1016/0300-483X(79)90040-4

    Article  CAS  PubMed  Google Scholar 

  39. Delori FC, Castany MA, Webb RH (1978) Fluorescence characteristics of sodium fluorescein in plasma and whole blood. Exp Eye Res 27:417–425. https://doi.org/10.1016/0014-4835(78)90020-9

    Article  CAS  PubMed  Google Scholar 

  40. Wolman M, Klatzo I, Chui E et al (1981) Evaluation of the dye-protein tracers in pathophysiology of the blood-brain barrier. Acta Neuropathol 54(1):55–61. https://doi.org/10.1007/BF00691332

    Article  CAS  PubMed  Google Scholar 

  41. Folaron M, Strawbridge R, Samkoe KS et al (2018) Elucidating the kinetics of sodium fluorescein for fluorescence-guided surgery of glioma. J Neurosurg 131(3):724–734. https://doi.org/10.3171/2018.4.JNS172644

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hatashita S, Hoff JT (1990) Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke 21:582–288. https://doi.org/10.1161/01.str.21.4.582

    Article  CAS  PubMed  Google Scholar 

  43. Erdlenbruch B, Alipour M, Fricker G et al (2003) Alkylglycerol opening of the BBB to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol 140:1201–1210. https://doi.org/10.1038/sj.bjp.0705554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Natah SS, Mouihate A, Pittman QJ et al (2005) Disruption of the BBB during TNBS colitis. Neurogastroenterol Motil 17:433–446. https://doi.org/10.1111/j.1365-2982.2005.00654.x

    Article  CAS  PubMed  Google Scholar 

  45. Hoffman HJ, Olszewski J (1961) Spread of sodium fluorescein in normal brain tissue. A study of the mechanism of the blood-brain barrier. Neurology 11:1081–1085. https://doi.org/10.1212/wnl.11.12.1081

    Article  CAS  PubMed  Google Scholar 

  46. Malmgren LT, Olsson Y (1980) Differences between the peripheral and the central nervous system in permeability to sodium fluorescein. J Comp Neurol 191(1):103–107. https://doi.org/10.1002/cne.901910106

    Article  CAS  PubMed  Google Scholar 

  47. Ichioka T, Miyatake S, Asai N et al (2004) Enhanced detection of malignant glioma xenograft by fluorescein-human serum albumin conjugate. J Neurooncol 67:47–52. https://doi.org/10.1023/b:neon.0000021783.62610.1b

    Article  PubMed  Google Scholar 

  48. Yen LF, Wei VC, Kuo EY et al (2013) Distinct patterns of cerebral extravasation by Evans blue and sodium fluorescein in rats. PLoS One 8:e68595. https://doi.org/10.1371/journal.pone.0068595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beard RS Jr, Hoettels BA, Meegan JE et al (2020) AKT2 maintains brain endothelial claudin-5 expression and selective activation of IR/AKT2/FOXO1-signaling reverses barrier dysfunction. J Cereb Blood Flow Metab 40(2):374–391. https://doi.org/10.1177/0271678X18817512

    Article  CAS  PubMed  Google Scholar 

  50. Cheng Z, Zhang J, Liu H et al (2010) Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis- and Alzheimer’s disease-related animal models despite reported BBB disruption. Drug Metab Dispos 38:1355–1361. https://doi.org/10.1124/dmd.110.033324

    Article  CAS  PubMed  Google Scholar 

  51. Hawkins BT, Ocheltree SM, Norwood KM et al (2007) Decreased BBB permeability to fluorescein in streptozotocin-treated rats. Neurosci Lett 411:1–5. https://doi.org/10.1016/j.neulet.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  52. Mathiesen Janiurek M, Soylu-Kucharz R, Christoffersen C et al (2019) Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis. Elife 8. Pii: e49405. https://doi.org/10.7554/eLife.49405

  53. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J et al (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47(9):1179–1188. https://doi.org/10.1177/002215549904700910

    Article  CAS  PubMed  Google Scholar 

  54. Berlier JE, Rothe A, Buller G et al (2003) Quantitative comparison of long-wavelength Alexa Fluor dyes to cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51(12):1699–1712. https://doi.org/10.1177/002215540305101214

    Article  CAS  PubMed  Google Scholar 

  55. Armulik A, Genové G, Mäe M et al (2010) Pericytes regulate the BBB. Nature 468(7323):557–561. https://doi.org/10.1038/nature09522

    Article  CAS  PubMed  Google Scholar 

  56. Mitra S, Mironov O, Foster TH (2012) Confocal fluorescence imaging enables noninvasive quantitative assessment of host cell populations in vivo following photodynamic therapy. Theranostics 2(9):840–849. https://doi.org/10.7150/thno.4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Watkins S, Robel S, Kimbrough IF et al (2014) Disruption of astrocyte-vascular coupling and the BBB by invading glioma cells. Nat Commun 5:4196. https://doi.org/10.1038/ncomms5196

    Article  CAS  PubMed  Google Scholar 

  58. Lutz SE, Smith JR, Kim DH et al (2017) Caveolin1 is required for Th1 cell infiltration, but not tight junction remodeling, at the BBB in autoimmune neuroinflammation. Cell Rep 21(8):2104–2117. https://doi.org/10.1016/j.celrep.2017.10.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mathiesen Janiurek M, Soylu-Kucharz R, Christoffersen C et al (2019) Apolipoprotein M-bound sphingosine-1-phosphate regulates BBB paracellular permeability and transcytosis. Elife 8. pii: e49405. https://doi.org/10.7554/eLife.49405

  60. Muradashvili N, Tyagi R, Lominadze D (2012) A dual-tracer method for differentiating transendothelial transport from paracellular leakage in vivo and in vitro. Front Physiol 3:166. https://doi.org/10.3389/fphys.2012.00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Bock MD, Van Haver V, Vandenbroucke RE et al (2016) Into rather unexplored terrain-transcellular transport across the BBB. Glia 64:1097–1123. https://doi.org/10.1002/glia.22960

    Article  PubMed  Google Scholar 

  62. Minshall RD, Tiruppathi C, Vogel SM et al (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 117:105–112. https://doi.org/10.1007/s00418-001-0367-x

    Article  CAS  PubMed  Google Scholar 

  63. Reese TS, Karnovsky MJ (1967) Fine structural localization of a BBB to exogenous peroxidase. J Cell Biol 34:207–217. https://doi.org/10.1083/jcb.34.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sheikov N, McDannold N, Sharma S et al (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34(7):1093–1104. https://doi.org/10.1016/j.ultrasmedbio.2007.12.015

    Article  PubMed  PubMed Central  Google Scholar 

  65. Westergaard E, Brightman MW (1973) Transport of protein across normal cerebral arteriols. J Comp Neurol 152:17–44. https://doi.org/10.1002/cne.901520103

    Article  CAS  PubMed  Google Scholar 

  66. Reyners H, de Reyners EG, Jadin JM et al (1975) An ultrastructural quantitative method for the evaluation of the permeability to horseradish peroxidase of cerebral cortex endothelial cells of the rat. Cell Tissue Res 157:93–99. https://doi.org/10.1007/BF00223232

    Article  CAS  PubMed  Google Scholar 

  67. Nag S (1998) BBB permeability measured with histochemistry. In: Pardridge WM (ed) Introduction to the BBB-methodology, biology and pathology. Cambridge University Press, Cambridge, pp 113–121

    Google Scholar 

  68. Nag S (2003) Pathophysiology of BBB breakdown. In: Nag S (ed) The BBB-Biology and research protocols – method in molecular medicine. Chapter 6. Humana Press, Totowa, pp 97–119

    Google Scholar 

  69. Orhan N, Ugur Yilmaz C, Ekizoglu O et al (2014) The effects of superoxide dismutase mimetic MnTMPyP on the altered blood-brain barrier integrity in experimental preeclampsia with or without seizures in rats. Brain Res 14(1563):91–102. https://doi.org/10.1016/j.brainres.2014.03.029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge use of the services and facilities of the Koç University Research Center for Translational Medicine (KUTTAM), funded by the Presidency of Turkey, Presidency of Strategy and Budget. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Presidency of Strategy and Budget.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahishali, B., Kaya, M. (2020). Evaluation of Blood-Brain Barrier Integrity Using Vascular Permeability Markers: Evans Blue, Sodium Fluorescein, Albumin-Alexa Fluor Conjugates, and Horseradish Peroxidase. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_316

Download citation

  • DOI: https://doi.org/10.1007/7651_2020_316

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1672-7

  • Online ISBN: 978-1-0716-1673-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics