Skip to main content

Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1341))

Abstract

CRISPR/Cas9, originally discovered as a bacterial immune system, has recently been engineered into the latest tool to successfully introduce site-specific mutations in a variety of different organisms. Composed only of the Cas9 protein as well as one engineered guide RNA for its functionality, this system is much less complex in its setup and easier to handle than other guided nucleases such as Zinc-finger nucleases or TALENs.

Here, we describe the simultaneous transfection of two paired CRISPR sgRNAs-Cas9 plasmids, in mouse embryonic stem cells (mESCs), resulting in the knockout of the selected target gene. Together with a four primer-evaluation system, it poses an efficient way to generate new independent knockout mouse embryonic stem cell lines.

These authors contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675. doi:10.1146/annurev-cellbio-100913-013116

    Article  CAS  PubMed  Google Scholar 

  2. Boyer LA, Mathur D, Jaenisch R (2006) Molecular control of pluripotency. Curr Opin Genet Dev 16:455–462. doi:10.1016/j.gde.2006.08.009

    Article  CAS  PubMed  Google Scholar 

  3. Beyer TA, Narimatsu M, Weiss A et al (2013) The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochim Biophys Acta 1830:2268–2279. doi:10.1016/j.bbagen.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  4. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680. doi:10.1016/j.cell.2008.02.008

    Article  CAS  PubMed  Google Scholar 

  5. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. doi:10.1016/j.cell.2014.05.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ishino Y, Shinagawa H, Makino K et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Jansen R, Embden JDA, Van Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575. doi:10.1046/j.1365-2958.2002.02839.x

    Article  CAS  PubMed  Google Scholar 

  8. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. doi:10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  9. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. doi:10.1126/science.1232033.RNA-Guided

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi:10.1126/science.1231143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Deltcheva E, Chylinski K, Sharma CM, Gonzales K (2011) CRISPR RNA maturation by trans -encoded small RNA and host factor RNase III. Nature 471:602–607. doi:10.1038/nature09886.CRISPR

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  13. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740. doi:10.1099/mic. 0.023960-0

    Article  CAS  PubMed  Google Scholar 

  14. Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400. doi:10.1128/JB.01412-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Semenova E, Jore MM, Datsenko KA et al (2011) Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A 108:10098–10103. doi:10.1073/pnas.1104144108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jinek M, Jiang F, Taylor DW et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997. doi:10.1126/science.1247997

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. doi:10.1016/j.cell.2014.09.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kearns NA, Genga RMJ, Enuameh MS et al (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141:219–223. doi:10.1242/dev.103341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tanenbaum ME, Gilbert LA, Qi LS et al (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646. doi:10.1016/j.cell.2014.09.039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. O‘Connell MR, Oakes BL, Sternberg SH et al (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. doi:10.1038/nature13769

    PubMed Central  Google Scholar 

  21. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11:122–123. doi:10.1038/nmeth.2812

    Article  CAS  PubMed  Google Scholar 

  22. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. doi:10.1038/nbt.2647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bae S, Park J, Kim J-S (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475. doi:10.1093/bioinformatics/btu048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Montague TG, Cruz JM, Gagnon JA et al (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:401–7. doi:10.1093/nar/gku410

    Article  Google Scholar 

  25. Xiao A, Cheng Z, Kong L et al (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–1182. doi:10.1093/bioinformatics/btt764

    Article  CAS  Google Scholar 

  26. Koike-Yusa H, Li Y, Tan E-P et al (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32:267–273. doi:10.1038/nbt.2800

    Article  CAS  PubMed  Google Scholar 

  27. Nora EP, Heard E (2011) Engineering genomic deletions and inversions in mouse ES cells using custom designed nucleases 1–15, Epigenesys website, protocol #62 (http://www.epigenesys.eu/images/stories/protocols/pdf/20130507072445_p62.pdf).

  28. Canver MC, Bauer DE, Dass A et al (2014) Characterization of genomic deletion efficiency mediated by CRISPR/Cas9 in mammalian cells. J Biol Chem. doi:10.1074/jbc.M114.564625

    PubMed Central  PubMed  Google Scholar 

  29. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. doi:10.1038/nprot.2013.143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Marx V (2014) Gene editing: how to stay on-target with CRISPR. Nat Methods 11:1021–1026. doi:10.1038/nmeth.3108

    Article  CAS  Google Scholar 

  31. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Epigenesys network for access to its protocol database. We thank the Bourc’his laboratory and specifically Dr. Maxim Greenberg for technical assistance and discussions. We thank Dr. Tobias Beyer and the Ciaudo laboratory for the critical reading of the manuscript and for fruitful discussions.

CRISPR reagents are available to the academic community through Addgene (http://www.addgene.org/).

This work was supported by a core grant from ETH-Z (supported by Roche) and SNF (31003A_153220). M.B. is supported by a PhD fellowship from the ETH-Z foundation (ETH-21 13-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constance Ciaudo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wettstein, R., Bodak, M., Ciaudo, C. (2015). Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology, vol 1341. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_213

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_213

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2953-5

  • Online ISBN: 978-1-4939-2954-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics