Skip to main content

Ligand- and Structure-Based Virtual Screening in Drug Discovery

  • Chapter
  • First Online:
Biophysical and Computational Tools in Drug Discovery

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 37))

Abstract

The virtual screening (VS) is an important tool used in the modern drug discovery process to identify new leads and drug-like molecules for therapeutic interventions. With the rapid advancements in the computational hardware supported by advanced algorithmic progress and comprehensive data, the VS has gained fast momentum in drug discovery paradigm. The VS protocol is performed predominantly by using the ligand-based (LB) and structure-based (SB) VS methods with each one having its own merits and demerits. The LBVS method works on the similarity approach based on the physicochemical parameters, chemical functionality, and shape similarity of the ligands. The SBVS method works on the complementarity of the ligand with the target binding site and is more preferred than LBVS due to the consideration of both ligand and target information. Further in the SBVS, the available conformational information of the active chemical space helps in making reasonable decisions for the ligand selection. However, the limitations in scoring functions and incorrect pose prediction may result in the inaccurate SB models of limited performance in VS experiments. Various factors interplay in the development of successful VS models and the fine tuning of these factors leads to the efficient VS models with high sensitivity. In this chapter, some of the recent ligand- and structure-based approaches for virtual screening in drug discovery are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT3AR:

Serotonin receptor

AAC:

Amino acid composition

AChE:

Acetylcholinesterase

AChEI:

Acetylcholinesterase inhibitors

AMBER:

Assisted model building with energy refinement

AMP:

Antimicrobial peptides

AmpC:

AmpC β-lactamase

AR:

Androgen receptor

BACE:

β-secretase

BEAR:

Binding estimation after refinement

BEDROC:

Boltzmann-enhanced discrimination of ROC

BRD4:

Bromodomain-containing protein 4

BuChE:

Butyl choline esterase

CADM:

Conventional autodock docking method

CASF:

Comparative assessment of scoring functions

CDK2:

Cyclin dependent kinase 2

CmaA1:

Mycobacterial cyclopropane synthase

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarity indices analysis

CRF:

Corticotropin-releasing factor receptor-1

DHFR:

Dihydrofolate reductase

DprE1 :

Decaprenylphosphoryl-beta-D-ribose oxidase

DUD-E :

Directory of useful decoys enhanced

EF:

Enrichment factor

EGFR :

Epidermal growth factor receptor

FGFr1:

Fibroblast growth factor receptor 1

FN:

False negatives

FP:

False positives

FXa:

Factor Xa

Gal-3:

Galectin-3

Glide SP:

Grid-based ligand docking with energetics Standard precision

Glide XP:

Grid-based ligand docking with energetics Extra precision

GnRH:

Gonadotropin releasing hormone receptor

GOLD:

Genetic optimization for ligand docking

GPCR:

G-protein coupled receptor

GR:

Glucocorticoid receptor

GSK-3:

Glycogen synthase kinase-3

H1R:

Histamine H1 receptor

H4R:

Histamine H4 receptor

HASL:

Hypothetical active site lattice

HBA:

Hydrogen bond acceptor

HBD:

Hydrogen bond donor

HDACis:

Histone deacetylase enzyme inhibitors

HIVpr:

Human immunodeficiency virus type 1 protease

HM:

Homology model

HTS:

High-throughput screening

HY:

Hydrophobic

IFD:

Induced fit docking

IFP:

Induced fit protocol

LBDD:

Ligand-based drug design

LBVS:

Ligand-based virtual screening

M. Tb :

Mycobacterium tuberculosis

MACCS:

Molecular ACCess System

MC4:

Melanocortin receptor-4

MCH:

Melanin concentrating hormone receptor

MDS:

Molecular dynamics simulation

MixMD:

Mixed molecular dynamics

MLR:

Multivariate linear regression

MM-GBSA :

Molecular mechanics-generalized born surface area

MM-PBSA :

Molecular mechanics-Poisson–Boltzmann surface area

MOE:

Molecular operating environment

NAMD:

Nanoscale molecular dynamics

NMR:

Nuclear magnetic resonance

PAINS:

Pan assay interference

PARP:

Poly (ADP-ribose) polymerase

PDB:

Protein Data Bank

PDE4B:

Phosphodiesterase 4B

PDE5A:

Phosphodiesterase 5A

PDGFrb:

Platelet derived growth factor receptor kinase

PET:

Positron emission tomography

PFP:

Probe finding probability

PLANTS:

Protein–ligand ANT system

PLIF:

Protein–ligand interaction fingerprint

PPARγ:

Peroxisome proliferator activated receptor gamma

PR:

Progesterone receptor

QSAR:

Quantitative structure–activity relationships

RBF:

Radial basis function

RF:

Random forest

rms:

Root mean square

RMSD:

Root mean square deviation

rmse:

Root mean square error

RNA:

Ribonucleic acid

ROC-AUC:

Area under the ROC curve

ROCS:

Rapid overlay of chemical structures

RXRα:

Retinoid X receptor alpha

SBDD:

Structure-based drug design

SBVS:

Structure-based virtual screening

siSASA:

Site solvent accessible surface area

STAMP:

Structural alignment of multiple proteins

SVM:

Support vector machine

SVMGen:

Support vector machine general

TN:

True negatives

TP:

True positives

VS:

Virtual screening

β2R:

β2-Adrenoceptor

References

  1. Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN (2007) Virtual screening in drug discovery – a computational perspective. Curr Protein Pept Sci 8:329–351

    Article  CAS  PubMed  Google Scholar 

  2. Wilson GL, Lill MA (2011) Integrating structure-based and ligand-based approaches for computational drug design. Future Med Chem 3:735–750

    Article  CAS  PubMed  Google Scholar 

  3. Prathipati P, Dixit A, Saxena AK (2007) Computer-aided drug design: integration of structure-based and ligand-based approaches in drug design. Curr Comput Aided Drug Des 3:133–148

    Article  CAS  Google Scholar 

  4. Kontoyianni M (2017) Docking and virtual screening in drug discovery. Methods Mol Biol 1647:255–266

    Article  PubMed  CAS  Google Scholar 

  5. da Silva Rocha SFL, Olanda CG, Fokoue HH, Sant'Anna CMR (2019) Virtual screening techniques in drug discovery: review and recent applications. Curr Top Med Chem 19:1751–1767

    Article  PubMed  CAS  Google Scholar 

  6. Slater O, Kontoyianni M (2019) The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discovery 14:619–637

    Article  CAS  Google Scholar 

  7. Carpenter KA, Huang X (2018) Machine learning-based virtual screening and its applications to Alzheimer's drug discovery: a review. Curr Pharm Des 24:3347–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pantaleao SQ, Fujii DGV, Maltarollo VG, da Silva DC, Trossini GHG, Weber KC, Scott LPB, Honorio KM (2017) The role of QSAR and virtual screening studies in type 2 diabetes drug discovery. Med Chem 13:706–720

    Article  CAS  PubMed  Google Scholar 

  9. Li Q, Shah S (2017) Structure-based virtual screening. Methods Mol Biol 1558:111–124

    Article  CAS  PubMed  Google Scholar 

  10. Roy K, Das R (2014) A review on principles, theory and practices of 2D-QSAR. Curr Drug Metab 15

    Google Scholar 

  11. Seeman P, Westman K, Protiva M, Jílek J, Jain PC, Saxena AK, Anand N, Humber L, Philipp A (1979) Neuroleptic receptors: stereoselectivity for neuroleptic enantiomers. Eur J Pharmacol 56:247–251

    Article  CAS  PubMed  Google Scholar 

  12. Saxena AK, Jain PC, Anand N, Dua PR (1973) Agents acting on the central nervous system. 15. 2-substituted 1,2,3,4,6,7,12,12a-octahydropyrazino [2′,1′:6,1]pyrido[3,4-b]indoles. New class of central nervous system depressants. J Med Chem 16:560–564

    Article  CAS  PubMed  Google Scholar 

  13. Seydel JK, Bürger H, Saxena AK, Coleman MD, Smith SN, Perris AD (1999) Quantitative structure–activity and structure–toxicity relationships of 4-aminodiphenyl sulphone derivatives with antiinflammatory activity. Quantitative Structure-Activity Relationships 18:43–51

    Article  CAS  Google Scholar 

  14. Saxena M, Agarwal SK, Patnaik GK, Saxena AK (1990) Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of [.beta.-(aroylamino)ethyl]piperazines and -piperidines and [2-[(arylamino)carbonyl]ethyl]piperazines, −piperidines, −pyrazinopyridoindoles, and -pyrazinoisoquinolines. A new class of potent H1 antagonists. J Med Chem 33:2970–2976

    Article  CAS  PubMed  Google Scholar 

  15. Saxena AK (1995) Physicochemical significance of topological parameters: molecular connectivity index and information content: part 2. Correlation studies with molar refractivity and lipophylicity. Quant Struct Activity Rel 14:142–148

    Article  CAS  Google Scholar 

  16. Saxena AK (1995) Physicochemical significance of topological parameters, connectivity indices and information content. Part 1: correlation studies in the sets with aromatic and aliphatic substituents. Quant Struct Activity Rel 14:31–38

    Article  CAS  Google Scholar 

  17. Saxena AK, Prathipati P (2003) Comparison of MLR, PLS and GA-MLR in QSAR analysis. SAR QSAR Environ Res 14:433–445

    Article  CAS  PubMed  Google Scholar 

  18. Saxena AK, Ram S, Dhaon MK, Saxena M, Jain PC, Patnaik GK, Anand N (1983) Synthesis and QSAR in 2-substituted 1,2,3,4,6,12,12a-octahydropyrzino-(2′,1′:6,1)-pyrido(3,4-b)indoles. A new class of H-antagonists. Indian J Chem 22B:1224–1232

    CAS  Google Scholar 

  19. Prabhakar YS, Saxena AK, Doss MJ (1989) QSAR study of the role of hydrophobicity in the activity of HMGR inhibitors. Drug Des Deliv 4:97–108

    CAS  PubMed  Google Scholar 

  20. Kubinyi H (1997) QSAR and 3D QSAR in drug design part 1: methodology. Drug Discov Today 2:457–467

    Article  CAS  Google Scholar 

  21. Hansch C (1981) The physicochemical approach to drug design and discovery (QSAR). Drug Dev Res 1:267–309

    Article  CAS  Google Scholar 

  22. Winkler DA (2002) The role of quantitative structure – activity relationships (QSAR) in biomolecular discovery. Brief Bioinform 3:73–86

    Article  CAS  PubMed  Google Scholar 

  23. Plummer EL (1995) Successful application of the QSAR paradigm in discovery programs. classical and three-dimensional QSAR in agrochemistry, American Chemical Society, pp 240–253

    Google Scholar 

  24. Murti A, Bhandari K, Ram S, Prabhakar YS, Saxena AK, Jain PC, Gulati AK, Srimal RC, Dhawan BN, Nityanand S, Anand N (1989) Synthesis and QSAR of 1-aryl-4-(B-2-quinolyl/1-isoquinolyl-ethyl)-piperazines & some related compounds as hypotensive. Indian J Chem 28B:942–934

    Google Scholar 

  25. Saxena AK, Ram S (1979) Quantitative structure-activity relationship – a review. In: Juker E (ed) Progress in drug research, vol 23. Birkhauser Verlag, Basel/Stuttgart, pp 199–224

    Google Scholar 

  26. Ellman J, Stoddard B, Wells J (1997) Combinatorial thinking in chemistry and biology. Proc Natl Acad Sci U S A 94:2779–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening – an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  28. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DV, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195

    Article  CAS  PubMed  Google Scholar 

  29. Carnero A (2006) High throughput screening in drug discovery. Clin Transl Oncol 8:482–490

    Article  CAS  PubMed  Google Scholar 

  30. Caraus I, Alsuwailem AA, Nadon R, Makarenkov V (2015) Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions. Brief Bioinform 16:974–986

    Article  PubMed  Google Scholar 

  31. Liu R, Li X, Lam KS (2017) Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 38:117–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Edwards P, Gardner M, Klute W, Smith G, Terrett N (1999) Applications of combinatorial chemistry to drug design and development. Curr Opin Drug Discov Devel 2:321–331

    CAS  PubMed  Google Scholar 

  33. Kennedy JP, Williams L, Bridges TM, Daniels RN, Weaver D, Lindsley CW (2008) Application of combinatorial chemistry science on modern drug discovery. J Comb Chem 10:345–354

    Article  CAS  PubMed  Google Scholar 

  34. Masimirembwa CM, Bredberg U, Andersson TB (2003) Metabolic stability for drug discovery and development: pharmacokinetic and biochemical challenges. Clin Pharmacokinet 42:515–528

    Article  CAS  PubMed  Google Scholar 

  35. Shin HK, Kang Y-M, No KT (2017) Predicting ADME properties of chemicals. In: Handbook of computational chemistry, pp 2265–2301

    Chapter  Google Scholar 

  36. Sacan A, Ekins S, Kortagere S (2012) Applications and limitations of in silico models in drug discovery. Methods Mol Biol 910:87–124

    Article  CAS  PubMed  Google Scholar 

  37. Chen H, Zhou X, Gao Y, Chen H, Zhou J (2017) Fragment-based drug design: strategic advances and lessons learned. In: Chackalamannil S, Rotella D, Ward SE (eds) Comprehensive medicinal chemistry III. Elsevier, Oxford, pp 212–232

    Chapter  Google Scholar 

  38. Bhunia SS, Saxena AK (2021) Efficiency of homology modeling assisted molecular docking in G-protein coupled receptors. Curr Top Med Chem 21:269–294

    Article  CAS  PubMed  Google Scholar 

  39. Oprea TI, Matter H (2004) Integrating virtual screening in lead discovery. Curr Opin Chem Biol 8:349–358

    Article  CAS  PubMed  Google Scholar 

  40. Vadivelan S, Sinha BN, Rambabu G, Boppana K, Jagarlapudi SARP (2008) Pharmacophore modeling and virtual screening studies to design some potential histone deacetylase inhibitors as new leads. J Mol Graph Model 26:935–946

    Article  CAS  PubMed  Google Scholar 

  41. Wingert BM, Camacho CJ (2018) Improving small molecule virtual screening strategies for the next generation of therapeutics. Curr Opin Chem Biol 44:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Combes RD (2012) In silico methods for toxicity prediction. In: Balls M, Combes RD, Bhogal N (eds) New technologies for toxicity testing. Springer, New York, pp 96–116

    Chapter  Google Scholar 

  43. Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA (2012) Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 17:44–55

    Article  CAS  PubMed  Google Scholar 

  44. Cheng F, Li W, Liu G, Tang Y (2013) In silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem 13:1273–1289

    Article  CAS  PubMed  Google Scholar 

  45. Radaeva M, Dong X, Cherkasov A (2020) The use of methods of computer-aided drug discovery in the development of topoisomerase II inhibitors: applications and future directions. J Chem Inf Model 60:3703–3721

    Article  CAS  PubMed  Google Scholar 

  46. Baig MH, Ahmad K, Rabbani G, Danishuddin M, Choi I (2018) Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr Neuropharmacol 16:740–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao L, Ciallella HL, Aleksunes LM, Zhu H (2020) Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov Today 25:1624–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aparoy P, Reddy KK, Reddanna P (2012) Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr Med Chem 19:3763–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Acharya C, Coop A, Polli JE, MacKerell AD (2011) Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Current Computer Aided Drug Design 7:10–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gupta AK, Bhunia SS, Balaramnavar VM, Saxena AK (2011) Pharmacophore modelling, molecular docking and virtual screening for EGFR (HER 1) tyrosine kinase inhibitors. SAR QSAR Environ Res 22:239–263

    Article  CAS  PubMed  Google Scholar 

  51. Saxena AK, Bhunia SS, Saxena M (2019) Integration on ligand and structure based approaches in GPCRs. In: Lebon G (ed) Structure and function of GPCRs. Springer, Cham, pp 101–161

    Google Scholar 

  52. Tratrat C, Haroun M, Paparisva A, Geronikaki A, Kamoutsis C, Ćirić A, Glamočlija J, Soković M, Fotakis C, Zoumpoulakis P, Bhunia SS, Saxena AK (2018) Design, synthesis and biological evaluation of new substituted 5-benzylideno-2-adamantylthiazol[3,2-b][1,2,4]triazol-6(5H)ones. Pharmacophore models for antifungal activity. Arab J Chem 11:573–590

    Article  CAS  Google Scholar 

  53. Bhunia SS, Saxena AK (2017) Molecular modelling studies in explaining the higher GPVI antagonistic activity of the racemic 2-(4-methoxyphenylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxamide than its enantiomers. SAR QSAR Environ Res 28:783–799

    Article  CAS  PubMed  Google Scholar 

  54. Bhunia SS, Roy KK, Saxena AK (2011) Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches. J Chem Inf Model 51:1966–1985

    Article  CAS  PubMed  Google Scholar 

  55. Saxena M, Bhunia SS, Saxena AK (2012) Docking studies of novel pyrazinopyridoindoles class of antihistamines with the homology modelled H1-receptor. SAR QSAR Environ Res 23:311–325

    Article  CAS  PubMed  Google Scholar 

  56. Bhunia SS, Singh S, Saxena S, Saxena AK (2015) Pharmacophore modeling, docking and molecular dynamics studies on Caspase-3 activators binding at β-tubulin site. Curr Comput Aided Drug Des 11:72–83

    Article  CAS  PubMed  Google Scholar 

  57. Saxena M, Bhunia SS, Saxena AK (2015) Molecular modelling studies on 2-substituted octahydropyrazinopyridoindoles for histamine H2 receptor antagonism. SAR QSAR Environ Res 26:739–755

    Article  CAS  PubMed  Google Scholar 

  58. Roy KK, Bhunia SS, Saxena AK (2011) CoMFA, CoMSIA, and docking studies on thiolactone-class of potent anti-malarials: identification of essential structural features modulating anti-malarial activity. Chem Biol Drug Des 78:483–493

    Article  CAS  PubMed  Google Scholar 

  59. Saxena AK, Devillers J, Bhunia SS, Bro E (2015) Modelling inhibition of avian aromatase by azole pesticides. SAR QSAR Environ Res 26:757–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Walters WP, Wang R (2019) New trends in virtual screening. J Chem Inf Model 59:3603–3604

    Article  CAS  PubMed  Google Scholar 

  62. Walters WP, Wang R (2020) New trends in virtual screening. J Chem Inf Model 60:4109–4111

    Article  CAS  PubMed  Google Scholar 

  63. Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350–4358

    Article  CAS  PubMed  Google Scholar 

  64. Dwivedi N, Mishra BN, Katoch VM (2011) 2D-QSAR model development and analysis on variant groups of anti-tuberculosis drugs. Bioinformation 7:82–90

    Article  PubMed  PubMed Central  Google Scholar 

  65. Claudio V-J, Amanda D, Vanderlan da Silva B, Eliezer JB, Carlos Alberto Manssour F (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14:1829–1852

    Article  Google Scholar 

  66. Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML (2019) Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr Top Med Chem 19:1694–1711

    Article  CAS  PubMed  Google Scholar 

  67. Fraga CAM (2009) Drug hybridization strategies: before or after lead identification? Expert Opin Drug Discovery 4:605–609

    Article  CAS  Google Scholar 

  68. Saxena AK, Ram S, Saxena M, Singh N, Prathipati P, Jain PC, Singh HK, Anand N (2003) QSAR studies in substituted 1,2,3,4,6,7,12,12a-octa-hydropyrazino[2′,1′:6,1]pyrido[3,4-b]indoles – a potent class of neuroleptics. Bioorg Med Chem 11:2085–2090

    Article  CAS  PubMed  Google Scholar 

  69. Chakrabarty R, Rao J, Anand A, Roy AD, Roy R, Shankar G, Dua PR, Saxena AK (2007) Rational design, synthesis and evaluation of (6aR( *),11bS( *))-1-(4-fluorophenyl)-4-{7-[4-(4-fluorophenyl)-4-oxobutyl]1,2,3,4,6,6a,7,11b,12,12a(RS)-decahydropyrazino[2′,1′:6,1]pyrido[3,4-b]indol-2-yl}-butan-1-one as a potential neuroleptic agent. Bioorg Med Chem 15:7361–7367

    Article  CAS  PubMed  Google Scholar 

  70. Martin Y (2002) 3D QSAR: current state, scope, and limitations. Perspect Drug Discov Des 12:3–23

    Google Scholar 

  71. Shukla A, Tyagi R, Meena S, Datta D, Srivastava SK, Khan F (2020) 2D- and 3D-QSAR modelling, molecular docking and in vitro evaluation studies on 18β-glycyrrhetinic acid derivatives against triple-negative breast cancer cell line. J Biomol Struct Dyn 38:168–185

    Article  CAS  PubMed  Google Scholar 

  72. Saxena AK, Saxena M, Chi H, Wiese M (1993) Identification of a pharmacophore by application of hypothetical active site lattice (HASL) approach. Med Chem Res 3:201–208

    CAS  Google Scholar 

  73. Dixit A, Kashaw SK, Gaur S, Saxena AK (2004) Development of CoMFA, advance CoMFA and CoMSIA models in pyrroloquinazolines as thrombin receptor antagonist. Bioorg Med Chem 12:3591–3598

    Article  CAS  PubMed  Google Scholar 

  74. Prathipati P, Pandey G, Saxena AK (2005) CoMFA and docking studies on glycogen phosphorylase a inhibitors as antidiabetic agents. J Chem Inf Model 45:136–145

    Article  CAS  PubMed  Google Scholar 

  75. Pandey G, Saxena AK (2006) 3D QSAR studies on protein tyrosine phosphatase 1B inhibitors: comparison of the quality and predictivity among 3D QSAR models obtained from different conformer-based alignments. J Chem Inf Model 46:2579–2590

    Article  CAS  PubMed  Google Scholar 

  76. Roy KK, Dixit A, Saxena AK (2008) An investigation of structurally diverse carbamates for acetylcholinesterase (AChE) inhibition using 3D-QSAR analysis. J Mol Graph Model 27:197–208

    Article  CAS  PubMed  Google Scholar 

  77. Chaudhaery SS, Roy KK, Saxena AK (2009) Consensus superiority of the pharmacophore-based alignment, over maximum common substructure (MCS): 3D-QSAR studies on carbamates as acetylcholinesterase inhibitors. J Chem Inf Model 49:1590–1601

    Article  CAS  PubMed  Google Scholar 

  78. Saxena M, Gaur S, Prathipati P, Saxena AK (2006) Synthesis of some substituted pyrazinopyridoindoles and 3D QSAR studies along with related compounds: piperazines, piperidines, pyrazinoisoquinolines, and diphenhydramine, and its semi-rigid analogs as antihistamines (H1). Bioorg Med Chem 14:8249–8258

    Article  CAS  PubMed  Google Scholar 

  79. Prathipati P, Saxena AK (2005) Characterization of beta3-adrenergic receptor: determination of pharmacophore and 3D QSAR model for beta3 adrenergic receptor agonism. J Comput Aided Mol Des 19:93–110

    Article  CAS  PubMed  Google Scholar 

  80. Ripphausen P, Nisius B, Bajorath J (2011) State-of-the-art in ligand-based virtual screening. Drug Discov Today 16:372–376

    Article  CAS  PubMed  Google Scholar 

  81. Stahura FL, Bajorath J (2005) New methodologies for ligand-based virtual screening. Curr Pharm Des 11:1189–1202

    Article  CAS  PubMed  Google Scholar 

  82. Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216

    Article  CAS  PubMed  Google Scholar 

  83. Caporuscio F, Tafi A (2011) Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem 18:2543–2553

    Article  CAS  PubMed  Google Scholar 

  84. Andricopulo AD (2009) Structure- and ligand-based drug design: advances and perspectives. Curr Top Med Chem 9:754

    Article  CAS  PubMed  Google Scholar 

  85. Shim J, Mackerell Jr AD (2011) Computational ligand-based rational design: role of conformational sampling and force fields in model development. Med Chem Commun 2:356–370

    Article  CAS  Google Scholar 

  86. Tomar V, Mazumder M, Chandra R, Yang J, Sakharkar MK (2019) Small molecule drug design. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C (eds) Encyclopedia of bioinformatics and computational biology. Academic Press, Oxford, pp 741–760

    Chapter  Google Scholar 

  87. Veselovsky AV, Ivanov AS (2003) Strategy of computer-aided drug design. Curr Drug Targets Infect Disord 3:33–40

    Article  CAS  PubMed  Google Scholar 

  88. Yu W, MacKerell Jr AD (2017) Computer-aided drug design methods. Methods Mol Biol 1520:85–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Agrafiotis DK, Gibbs AC, Zhu F, Izrailev S, Martin E (2007) Conformational sampling of bioactive molecules: a comparative study. J Chem Inf Model 47:1067–1086

    Article  CAS  PubMed  Google Scholar 

  90. Foloppe N, Chen IJ (2009) Conformational sampling and energetics of drug-like molecules. Curr Med Chem 16:3381–3413

    Article  CAS  PubMed  Google Scholar 

  91. Kirchmair J, Laggner C, Wolber G, Langer T (2005) Comparative analysis of protein-bound ligand conformations with respect to catalyst's conformational space subsampling algorithms. J Chem Inf Model 45:422–430

    Article  CAS  PubMed  Google Scholar 

  92. Kirchmair J, Wolber G, Laggner C, Langer T (2006) Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model 46:1848–1861

    Article  CAS  PubMed  Google Scholar 

  93. Greenidge PA, Carlsson B, Bladh LG, Gillner M (1998) Pharmacophores incorporating numerous excluded volumes defined by X-ray crystallographic structure in three-dimensional database searching: application to the thyroid hormone receptor. J Med Chem 41:2503–2512

    Article  CAS  PubMed  Google Scholar 

  94. Yu W, Lakkaraju SK, Raman EP, Fang L, MacKerell Jr AD (2015) Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules. J Chem Inf Model 55:407–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Griffith R, Luu TTT, Garner J, Keller PA (2005) Combining structure-based drug design and pharmacophores. J Mol Graph Model 23:439–446

    Article  CAS  PubMed  Google Scholar 

  96. Steindl T, Langer T (2005) Docking versus pharmacophore model generation: a comparison of high-throughput virtual screening strategies for the search of human rhinovirus coat protein inhibitors. QSAR Comb Sci 24:470–479

    Article  CAS  Google Scholar 

  97. Gupta A, Kumar V, Aparoy P (2018) Role of topological, electronic, geometrical, constitutional and quantum chemical based descriptors in QSAR: mPGES-1 as a case study. Curr Top Med Chem 18:1075–1090

    Article  CAS  PubMed  Google Scholar 

  98. Kang X, Dong F, Shi C, Liu S, Sun J, Chen J, Li H, Xu H, Lao X, Zheng H (2019) DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data 6:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Karasuyama M, Takeuchi I (2010) Multiple incremental decremental learning of support vector machines. IEEE Trans Neural Netw 21:1048–1059

    Article  PubMed  Google Scholar 

  100. Lin Y, Jeon Y (2006) Random forests and adaptive nearest neighbors. J Am Stat Assoc 101:578–590

    Article  CAS  Google Scholar 

  101. Liu S, Bao J, Lao X, Zheng H (2018) Novel 3D structure based model for activity prediction and design of antimicrobial peptides. Sci Rep 8:11189–11189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chaudhaery SS, Roy KK, Shakya N, Saxena G, Sammi SR, Nazir A, Nath C, Saxena AK (2010) Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology. J Med Chem 53:6490–6505

    Article  CAS  PubMed  Google Scholar 

  103. Roy KK, Tota S, Tripathi T, Chander S, Nath C, Saxena AK (2012) Lead optimization studies towards the discovery of novel carbamates as potent AChE inhibitors for the potential treatment of Alzheimer's disease. Bioorg Med Chem 20:6313–6320

    Article  CAS  PubMed  Google Scholar 

  104. Asinex. http://www.asinex.com

  105. Singh S, Roy KK, Khan SR, Kashyap VK, Sharma A, Jaiswal S, Sharma SK, Krishnan MY, Chaturvedi V, Lal J, Sinha S, Dasgupta A, Srivastava R, Saxena AK (2015) Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg Med Chem 23:742–752

    Article  CAS  PubMed  Google Scholar 

  106. Kb S, Kumari A, Shetty D, Fernandes E, Dv C, Jays J, Murahari M (2020) Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis. J Mol Graph Model 101:107718

    Article  PubMed  CAS  Google Scholar 

  107. Choudhury C, Priyakumar UD, Sastry GN (2016) Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors. J Chem Sci 128:719–732

    Article  CAS  Google Scholar 

  108. Sohn YS, Park C, Lee Y, Kim S, Thangapandian S, Kim Y, Kim HH, Suh JK, Lee KW (2013) Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J Mol Graph Model 46:1–9

    Article  CAS  PubMed  Google Scholar 

  109. Carlson HA, Masukawa KM, Rubins K, Bushman FD, Jorgensen WL, Lins RD, Briggs JM, McCammon JA (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–2114

    Article  CAS  PubMed  Google Scholar 

  110. Jung SW, Kim M, Ramsey S, Kurtzman T, Cho AE (2018) Water pharmacophore: designing ligands using molecular dynamics simulations with water. Sci Rep 8:10400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  113. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389

    Article  CAS  PubMed  Google Scholar 

  114. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fischer E (1894) Einfluss der configuration auf die Wirkung der enzyme. Ber Dtsch Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  116. Koshland Jr DE (1963) Correlation of structure and function in enzyme action. Science 142:1533–1541

    Article  CAS  PubMed  Google Scholar 

  117. Fuentes G, Dastidar SG, Madhumalar A, Verma CS (2011) Role of protein flexibility in the discovery of new drugs. Drug Dev Res 72:26–35

    Article  CAS  Google Scholar 

  118. Carlson HA (2002) Protein flexibility is an important component of structure-based drug discovery. Curr Pharm Des 8:1571–1578

    Article  CAS  PubMed  Google Scholar 

  119. Batool M, Rather B, Choi S (2019) A structure-based drug discovery paradigm. Int J Mol Sci 20:2783

    Article  CAS  PubMed Central  Google Scholar 

  120. Kubinyi H (2006) Success stories of computer-aided design. In: Computer applications in pharmaceutical research and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 377–424

    Chapter  Google Scholar 

  121. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797

    Article  CAS  PubMed  Google Scholar 

  123. Klebe G (2000) Recent developments in structure-based drug design. J Mol Med 78:269–281

    Article  CAS  PubMed  Google Scholar 

  124. Blundell TL (1996) Structure-based drug design. Nature 384:23–26

    CAS  PubMed  Google Scholar 

  125. Philip P, Anshuman D, Anil KS (2007) Computer-aided drug design: integration of structure-based and ligand-based approaches in drug design. Curr Comput Aided Drug Des 3:133–148

    Article  Google Scholar 

  126. Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14:1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Korb O, Stützle T, Exner T (2006) PLANTS: application of ant colony optimization to structure-based drug design. In: Dorigo M., Gambardella L.M., Birattari M., Martinoli A., Poli R., Stützle T. (eds) Ant colony optimization and swarm intelligence. ANTS 2006. Lecture notes in computer science, vol 4150. Springer, Berlin

    Google Scholar 

  128. Romano TK (2007) Structure-based drug design: docking and scoring. Curr Protein Pept Sci 8:312–328

    Article  Google Scholar 

  129. Li J, Fu A, Zhang L (2019) An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip Sci 11:320–328

    Article  PubMed  CAS  Google Scholar 

  130. Huang S-Y, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein–ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908

    Article  CAS  PubMed  Google Scholar 

  131. Huang S-Y, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pons C, Grosdidier S, Solernou A, Pérez-Cano L, Fernández-Recio J (2010) Present and future challenges and limitations in protein-protein docking. Proteins 78:95–108

    Article  CAS  PubMed  Google Scholar 

  133. Guedes IA, de Magalhães CS, Dardenne LE (2014) Receptor-ligand molecular docking. Biophys Rev 6:75–87

    Article  CAS  PubMed  Google Scholar 

  134. Guedes IA, Pereira FSS, Dardenne LE (2018) Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front Pharmacol 9:1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen H, Lyne PD, Giordanetto F, Lovell T, Li J (2006) On evaluating molecular-docking methods for pose prediction and enrichment factors. J Chem Inf Model 46:401–415

    Article  CAS  PubMed  Google Scholar 

  136. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474

    Article  CAS  PubMed  Google Scholar 

  137. Antunes DA, Devaurs D, Kavraki LE (2015) Understanding the challenges of protein flexibility in drug design. Expert Opin Drug Discovery 10:1301–1313

    Article  CAS  Google Scholar 

  138. Carlson HA, Masukawa KM, McCammon JA (1999) Method for including the dynamic fluctuations of a protein in computer-aided drug design. Chem Eur J 103:10213–10219

    CAS  Google Scholar 

  139. Dixit A, Verkhivker GM (2012) Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations. J Chem Inf Model 52:2501–2515

    Article  CAS  PubMed  Google Scholar 

  140. Kumar S, Singh B, Kumari P, Kumar PV, Agnihotri G, Khan S, Kant Beuria T, Syed GH, Dixit A (2021) Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Comput Struct Biotechnol J 19:1998–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lexa KW, Carlson HA (2012) Protein flexibility in docking and surface mapping. Q Rev Biophys 45:301–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Teilum K, Olsen JG, Kragelund BB (2009) Functional aspects of protein flexibility. Cell Mol Life Sci 66:2231–2247

    Article  CAS  PubMed  Google Scholar 

  143. De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061

    Article  PubMed  CAS  Google Scholar 

  144. Amaro RE, Baudry J, Chodera J, Demir Ö, McCammon JA, Miao Y, Smith JC (2018) Ensemble docking in drug discovery. Biophys J 114:2271–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. He J, Tao H, Huang S-Y (2019) Protein-ensemble–RNA docking by efficient consideration of protein flexibility through homology models. Bioinformatics 35:4994–5002

    Article  CAS  PubMed  Google Scholar 

  146. Fu G, Sivaprakasam P, Dale OR, Manly SP, Cutler SJ, Doerksen RJ (2014) Pharmacophore modeling, ensemble docking, virtual screening, and biological evaluation on glycogen synthase kinase-3β. Mol Inform 33:610–626

    Article  CAS  PubMed  Google Scholar 

  147. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  148. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  PubMed  Google Scholar 

  149. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  151. Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2020

    Google Scholar 

  152. Strecker C, Meyer B (2018) Plasticity of the binding site of renin: optimized selection of protein structures for ensemble docking. J Chem Inf Model 58:1121–1131

    Article  CAS  PubMed  Google Scholar 

  153. Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48:2534–2547

    Article  CAS  PubMed  Google Scholar 

  154. Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “Early Recognition” problem. J Chem Inf Model 47:488–508

    Article  CAS  PubMed  Google Scholar 

  155. Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. Paper presented at: SC '06: proceedings of the 2006 ACM/IEEE conference on supercomputing; 11–17 Nov 2006

    Google Scholar 

  156. Craig IR, Essex JW, Spiegel K (2010) Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments. J Chem Inf Model 50:511–524

    Article  CAS  PubMed  Google Scholar 

  157. Novoa EM, Pouplana LRD, Barril X, Orozco M (2010) Ensemble docking from homology models. J Chem Theory Comput 6:2547–2557

    Article  CAS  PubMed  Google Scholar 

  158. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  159. Eddy SR (2009) A new generation of homology search tools based on probabilistic inference. Genome Inform 23:205–211

    PubMed  Google Scholar 

  160. Russell RB, Barton GJ (1992) Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins 14:309–323

    Article  CAS  PubMed  Google Scholar 

  161. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  162. Ellingson SR, Miao Y, Baudry J, Smith JC (2015) Multi-conformer ensemble docking to difficult protein targets. J Phys Chem B 119:1026–1034

    Article  CAS  PubMed  Google Scholar 

  163. Yau MQ, Emtage AL, Loo JSE (2020) Benchmarking the performance of MM/PBSA in virtual screening enrichment using the GPCR-Bench dataset. J Comput Aided Mol Des 34:1133–1145

    Article  CAS  PubMed  Google Scholar 

  164. Junmei W, Tingjun H, Xiaojie X (2006) Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput Aided Drug Des 2:287–306

    Article  Google Scholar 

  165. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discovery 10:449–461

    Article  CAS  Google Scholar 

  166. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev 119:9478–9508

    Article  CAS  PubMed  Google Scholar 

  167. Afifi K, Al-Sadek AF (2018) Improving classical scoring functions using random forest: the non-additivity of free energy terms' contributions in binding. Chem Biol Drug Des 92:1429–1434

    Article  CAS  PubMed  Google Scholar 

  168. Lafont V, Armstrong AA, Ohtaka H, Kiso Y, Mario Amzel L, Freire E (2007) Compensating enthalpic and entropic changes hinder binding affinity optimization. Chem Biol Drug Des 69:413–422

    Article  CAS  PubMed  Google Scholar 

  169. Chodera JD, Mobley DL (2013) Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu Rev Biophys 42:121–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC (2016) Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv 2:e1501240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    Article  CAS  PubMed  Google Scholar 

  172. Oehme DP, Brownlee RT, Wilson DJ (2012) Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. J Comput Chem 33:2566–2580

    Article  CAS  PubMed  Google Scholar 

  173. Rastelli G, Degliesposti G, Del Rio A, Sgobba M (2009) Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening. Chem Biol Drug Des 73:283–286

    Article  CAS  PubMed  Google Scholar 

  174. Ahinko M, Niinivehmas S, Jokinen E, Pentikäinen OT (2019) Suitability of MMGBSA for the selection of correct ligand binding modes from docking results. Chem Biol Drug Des 93:522–538

    Article  CAS  PubMed  Google Scholar 

  175. Maffucci I, Hu X, Fumagalli V, Contini A (2018) An efficient implementation of the Nwat-MMGBSA method to rescore docking results in medium-throughput virtual screenings. Front Chem 6:43–43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Liu Z, Li Y, Han L, Li J, Liu J, Zhao Z, Nie W, Liu Y, Wang R (2014) PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31:405–412

    Article  CAS  PubMed  Google Scholar 

  177. Wang C, Zhang Y (2017) Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J Comput Chem 38:169–177

    Article  PubMed  CAS  Google Scholar 

  178. Cheng T, Li X, Li Y, Liu Z, Wang R (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49:1079–1093

    Article  CAS  PubMed  Google Scholar 

  179. Li Y, Su M, Liu Z, Li J, Liu J, Han L, Wang R (2018) Assessing protein–ligand interaction scoring functions with the CASF-2013 benchmark. Nat Protoc 13:666–680

    Article  CAS  PubMed  Google Scholar 

  180. Li Y, Liu Z, Li J, Han L, Liu J, Zhao Z, Wang R (2014) Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set. J Chem Inf Model 54:1700–1716

    Article  CAS  PubMed  Google Scholar 

  181. Li H, Leung K-S, Wong M-H, Ballester PJ (2014) Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinformatics 15:291

    Article  PubMed  PubMed Central  Google Scholar 

  182. Pei J, Zheng Z, Kim H, Song LF, Walworth S, Merz MR, Merz KM (2019) Random Forest refinement of pairwise potentials for protein–ligand decoy detection. J Chem Inf Model 59:3305–3315

    Article  CAS  PubMed  Google Scholar 

  183. Li L, Khanna M, Jo I, Wang F, Ashpole NM, Hudmon A, Meroueh SO (2011) Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation. J Chem Inf Model 51:755–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xu D, Meroueh SO (2016) Effect of binding pose and modeled structures on SVMGen and GlideScore enrichment of chemical libraries. J Chem Inf Model 56:1139–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sharma R, Schurer S, Muskal S (2016) High quality, small molecule-activity datasets for kinase research. F1000Research 5:1366

    Article  CAS  Google Scholar 

  186. Corona RI, Sudarshan S, Aluru S, Guo J-t (2018) An SVM-based method for assessment of transcription factor-DNA complex models. BMC Bioinformatics 19:506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  188. Gupta A, Chaudhary N, Kakularam KR, Pallu R, Polamarasetty A (2015) The augmenting effects of desolvation and conformational energy terms on the predictions of docking programs against mPGES-1. PLoS One 10:e0134472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Mysinger MM, Shoichet BK (2010) Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model 50:1561–1573

    Article  CAS  PubMed  Google Scholar 

  190. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  PubMed  Google Scholar 

  191. Mondal J, Friesner RA, Berne BJ (2014) Role of desolvation in thermodynamics and kinetics of ligand binding to a kinase. J Chem Theory Comput 10:5696–5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Schuetz DA, Richter L, Amaral M, Grandits M, Grädler U, Musil D, Buchstaller H-P, Eggenweiler H-M, Frech M, Ecker GF (2018) Ligand desolvation steers on-rate and impacts drug residence time of heat shock protein 90 (Hsp90) inhibitors. J Med Chem 61:4397–4411

    Article  CAS  PubMed  Google Scholar 

  193. Shimokhina N, Bronowska A, Homans SW (2006) Contribution of ligand desolvation to binding thermodynamics in a ligand–protein interaction. Angew Chem Int Ed 45:6374–6376

    Article  CAS  Google Scholar 

  194. Graham SE, Smith RD, Carlson HA (2018) Predicting displaceable water sites using mixed-solvent molecular dynamics. J Chem Inf Model 58:305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Baynes BM, Trout BL (2003) Proteins in mixed solvents: a molecular-level perspective. J Phys Chem B 107:14058–14067

    Article  CAS  Google Scholar 

  196. Arcon JP, Defelipe LA, Lopez ED, Burastero O, Modenutti CP, Barril X, Marti MA, Turjanski AG (2019) Cosolvent-based protein pharmacophore for ligand enrichment in virtual screening. J Chem Inf Model 59:3572–3583

    Article  CAS  PubMed  Google Scholar 

  197. Arcon JP, Defelipe LA, Modenutti CP, López ED, Alvarez-Garcia D, Barril X, Turjanski AG, Martí MA (2017) Molecular dynamics in mixed solvents reveals protein–ligand interactions, improves docking, and allows accurate binding free energy predictions. J Chem Inf Model 57:846–863

    Article  CAS  PubMed  Google Scholar 

  198. Ung PM, Ghanakota P, Graham SE, Lexa KW, Carlson HA (2016) Identifying binding hot spots on protein surfaces by mixed-solvent molecular dynamics: HIV-1 protease as a test case. Biopolymers 105:21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yang JM, Chen YF, Shen TW, Kristal BS, Hsu DF (2005) Consensus scoring criteria for improving enrichment in virtual screening. J Chem Inf Model 45:1134–1146

    Article  CAS  PubMed  Google Scholar 

  200. Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, Tian S, Hou T (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975

    Article  CAS  PubMed  Google Scholar 

  201. Palacio-Rodríguez K, Lans I, Cavasotto CN, Cossio P (2019) Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci Rep 9:5142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Ramírez D, Caballero J (2018) Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules 23:1038

    Article  PubMed Central  CAS  Google Scholar 

  203. Pantsar T, Poso A (2018) Binding affinity via docking: fact and fiction. Molecules 23:1899

    Article  PubMed Central  CAS  Google Scholar 

  204. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  CAS  PubMed  Google Scholar 

  205. Park H, Eom JW, Kim YH (2014) Consensus scoring approach to identify the inhibitors of AMP-activated protein kinase α2 with virtual screening. J Chem Inf Model 54:2139–2146

    Article  CAS  PubMed  Google Scholar 

  206. Perez-Castillo Y, Sotomayor-Burneo S, Jimenes-Vargas K, Gonzalez-Rodriguez M, Cruz-Monteagudo M, Armijos-Jaramillo V, Cordeiro MNDS, Borges F, Sánchez-Rodríguez A, Tejera E (2019) CompScore: boosting structure-based virtual screening performance by incorporating docking scoring function components into consensus scoring. J Chem Inf Model 59:3655–3666

    Article  CAS  PubMed  Google Scholar 

  207. Schultes S, Kooistra AJ, Vischer HF, Nijmeijer S, Haaksma EE, Leurs R, de Esch IJ, de Graaf C (2015) Combinatorial consensus scoring for ligand-based virtual fragment screening: a comparative case study for serotonin 5-HT(3)A, histamine H(1), and histamine H(4) receptors. J Chem Inf Model 55:1030–1044

    Article  CAS  PubMed  Google Scholar 

  208. Ewing T, Baber JC, Feher M (2006) Novel 2D fingerprints for ligand-based virtual screening. J Chem Inf Model 46:2423–2431

    Article  CAS  PubMed  Google Scholar 

  209. ROCS 3.4.1.0: OpenEye Scientific Software, Santa Fe, NM http://www.eyesopen.com

  210. Baber JC, Shirley WA, Gao Y, Feher M (2006) The use of consensus scoring in ligand-based virtual screening. J Chem Inf Model 46:277–288

    Article  CAS  PubMed  Google Scholar 

  211. Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 171:165–176

    Article  CAS  PubMed  Google Scholar 

  212. Muegge I, Rarey M (2001) Small molecule docking and scoring

    Google Scholar 

  213. Drwal M, Griffith R (2013) Combination of ligand- and structure-based methods in virtual screening. Drug Discov Today Technol 10:395

    Article  Google Scholar 

  214. Scarpino A, Bajusz D, Proj M, Gobec M, Sosič I, Gobec S, Ferenczy GG, Keserű GM (2019) Discovery of immunoproteasome inhibitors using large-scale covalent virtual screening. Molecules 24

    Google Scholar 

  215. Xia J, Feng B, Shao Q, Yuan Y, Wang XS, Chen N, Wu S (2017) Virtual screening against phosphoglycerate kinase 1 in quest of novel apoptosis inhibitors. Molecules 22:1029

    Article  PubMed Central  CAS  Google Scholar 

  216. da Costa GV, Ferreira EFB, da Ramos RS, da Silva LB, de Sá EMF, da Silva AKP, Lobato CM, Souto RNP, da Silva CHT de P, Feder LB (2019) Hierarchical virtual screening of potential insectides inhibitors of acetylcholinesterase and juvenile hormone from temephos. Pharmaceuticals (Basel) 12:1–19

    Google Scholar 

  217. Richmond N, Abrams C, Wolohan P, Abrahamian E, Willett P, Clark R (2006) GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J Comput Aided Mol Des 20:567–587

    Article  CAS  PubMed  Google Scholar 

  218. Song Q, Liu T, Liu Y, Wang S, Fan C, Zheng L, Bao Y, Sun L, Yu C, Sun Y, Song Z, Wang G, Huang Y, Li Y (2019) An improved protocol for the virtual screening discovery of novel histone deacetylase inhibitors. Chem Pharm Bull (Tokyo) 67:1076–1081

    Article  CAS  Google Scholar 

  219. Kumar R, Kumar A, Långström B, Darreh-Shori T (2017) Discovery of novel choline acetyltransferase inhibitors using structure-based virtual screening. Sci Rep 7:16287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Liang JW, Wang S, Wang MY, Li SL, Li WQ, Meng FH (2019) Identification of novel PI3Kδ selective inhibitors by SVM-based multistage virtual screening and molecular dynamics simulations. Int J Mol Sci 20

    Google Scholar 

  221. Bhutoria S, Das B, Ghoshal N (2016) Supplementary material

    Google Scholar 

  222. Pinto VS, Araújo JSC, Silva RC, da Costa GV, Cruz JN, De ANMF, Campos JM, Santos CBR, Leite FHA, Junior MCS (2019) In silico study to identify new antituberculosis molecules from natural sources by hierarchical virtual screening and molecular dynamics simulations. Pharmaceuticals (Basel) 12

    Google Scholar 

  223. Viviani LG, Piccirillo E, Ulrich H, Amaral AT (2020) Virtual screening approach for the identification of hydroxamic acids as novel human Ecto-5'-Nucleotidase inhibitors. J Chem Inf Model 60:621–630

    Article  CAS  PubMed  Google Scholar 

  224. Masters L, Eagon S, Heying M (2020) Evaluation of consensus scoring methods for AutoDock Vina, smina and idock. J Mol Graph Model 96:107532

    Article  CAS  PubMed  Google Scholar 

  225. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    Article  CAS  PubMed  Google Scholar 

  226. McGann M (2012) FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des 26:897–906

    Article  CAS  PubMed  Google Scholar 

  227. Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P, Barril X, Hubbard RE, Morley SD (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10:–e1003571

    Google Scholar 

  228. Jain AN (2007) Surflex-dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21:281–306

    Article  CAS  PubMed  Google Scholar 

  229. Ericksen SS, Wu H, Zhang H, Michael LA, Newton MA, Hoffmann FM, Wildman SA (2017) Machine learning consensus scoring improves performance across targets in structure-based virtual screening. J Chem Inf Model 57:1579–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Mavrogeni ME, Pronios F, Zareifi D, Vasilakaki S, Lozach O, Alexopoulos L, Meijer L, Myrianthopoulos V, Mikros E (2018) A facile consensus ranking approach enhances virtual screening robustness and identifies a cell-active DYRK1α inhibitor. Future Med Chem 10:2411–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kooistra AJ, Vischer HF, McNaught-Flores D, Leurs R, de Esch IJP, de Graaf C (2016) Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci Rep 6:28288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

Funding

None.

Ethical Approval

As the article is a review article based on published data hence no animal or human studies were performed.

Informed Consent

As no patients were involved in studies reported in this chapter hence it is not applicable.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhunia, S.S., Saxena, M., Saxena, A.K. (2021). Ligand- and Structure-Based Virtual Screening in Drug Discovery. In: Saxena, A.K. (eds) Biophysical and Computational Tools in Drug Discovery. Topics in Medicinal Chemistry, vol 37. Springer, Cham. https://doi.org/10.1007/7355_2021_130

Download citation

Publish with us

Policies and ethics