Skip to main content

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 67))

Abstract

Catalysts (homogeneous or heterogeneous) can be utilized to improve the performance of conventional advanced oxidation processes (AOPs). In general, catalyst activity, selectivity, stability, simplicity of preparation, preparation time, cost, nontoxicity, availability, recycling capability, environmental suitability, etc. can be the important parameters in the catalyst selection. High costs, cumbersome preparations, and environmental unsuitability can usually hinder the industrial applicability of a catalyst. In this chapter, catalytic AOPs (Fenton-based processes, catalytic ozonation, heterogeneous photocatalysis, catalytic wet air oxidation, and catalytic supercritical water oxidation), related catalytic materials, and cost-effective catalytic materials used in these processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Litter MI, Quici N (2010) Photochemical advanced oxidation processes for water and wastewater treatment. Rec Pat Eng 4:217–241

    Article  CAS  Google Scholar 

  2. Covinich LG, Bengoechea DI, Fenoglio RJ, Area MC (2014) Advanced oxidation processes for wastewater treatment in the pulp and paper industry: a review. Am J Environ Eng 4(3):56–70

    Article  Google Scholar 

  3. Mota ALN, Albuquerque LF, Beltrame LTC, Chiavone-Filho O, Machulek A Jr, Nascimento CAO (2008) Advanced oxidation processes and their application in the petroleum industry: a review. Brazil J Petrol Gas 2(3):122–142

    Google Scholar 

  4. Jafarinejad S (2017) Petroleum waste treatment and pollution control. 1st edn. Elsevier Inc., Butterworth-Heinemann, USA

    Chapter  Google Scholar 

  5. Badriyha BN, Song W, Ravindran V, Pirbazari M (2007) Advanced oxidation processes for destruction of endocrine disrupting chemicals in water treatment: comparison of free-radical reaction mechanisms, pathways and kinetics. 2007 AIChE Annual Meeting

    Google Scholar 

  6. Hofman-Caris CHM, Harmsen DJH, Beerendonk EF (2010) Advanced oxidation processes, degradation of priority compounds by UV and UV-oxidation. TECHNEAU, deliverable number D 2.4.1.2b, Dec 2010

    Google Scholar 

  7. Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review. Global NEST J 10(3):376–385

    Google Scholar 

  8. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28(6):353–414

    Article  CAS  Google Scholar 

  9. Remya N, Lin JG (2011) Current status of microwave application in wastewater treatment – a review. Chem Eng J 166:797–813

    Article  CAS  Google Scholar 

  10. Glaze WH (1987) Drinking-water treatment with ozone. Environ Sci Technol 21(3):224–230

    Article  CAS  Google Scholar 

  11. Fu J, Kyzas GZ (2014) Wet air oxidation for the decolorization of dye wastewater: an overview of the last two decades. Chin J Catal 35:1–7

    Article  CAS  Google Scholar 

  12. Santos MSF, Alves A, Madeira LM (2011) Paraquat removal from water by oxidation with Fenton’s reagent. Chem Eng J 175:279–290

    Article  CAS  Google Scholar 

  13. Jafarinejad S (2015) Recent advances in determination of herbicide paraquat in environmental waters and its removal from aqueous solutions: a review. Inter Res J Appl Basic Sci 9(10):1758–1774

    CAS  Google Scholar 

  14. Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollution Rep 1:167–176

    Article  CAS  Google Scholar 

  15. Jafarinejad S, Abolghasemi H, Golzary A, Moosavian MA, Maragheh MG (2010) Fractional factorial design for the optimization of hydrothermal synthesis of lanthanum oxide under supercritical water condition. J Super Fluid 52:292–297

    Article  CAS  Google Scholar 

  16. Jafarinejad S (2014) Supercritical water oxidation (SCWO) in oily wastewater treatment. National e-conference on advances in basic sciences and engineering (AEBSCONF), Iran

    Google Scholar 

  17. Jafarinejad S (2015) Ozonation advanced oxidation process and place of its use in oily sludge and wastewater treatment. 1st international conference on environmental engineering (eiconf), Tehran, Iran

    Google Scholar 

  18. Jafarinejad S (2015) Heterogeneous photocatalysis oxidation process and use of it for oily wastewater treatment. 1st international conference on environmental engineering (eiconf), Tehran, Iran

    Google Scholar 

  19. Sabet JK, Jafarinejad S, Golzary A (2014) Supercritical water oxidation for the recovery of dysprosium ion from aqueous solutions. Inter Res J Appl Basic Sci 8(8):1079–1083

    CAS  Google Scholar 

  20. Song H, You JA, Chen C, Zhang H, Ji XZ, Li C, Yang Y, Xu N, Huang J (2016) Manganese functionalized mesoporous molecular sieves Ti-HMS as a Fenton-like catalyst for dyes wastewater purification by advanced oxidation processes. J Environ Chem Eng 4:4653–4660

    Article  CAS  Google Scholar 

  21. Kim KH, Ihm SK (2011) Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J Hazard Mater 186:16–34

    Article  CAS  Google Scholar 

  22. Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003

    Article  CAS  Google Scholar 

  23. Huang CP, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag 13:361–377

    Article  CAS  Google Scholar 

  24. Loures CCA, Alcântara MAK, Filho HJI, Teixeira ACSC, Silva FT, Paiva TCB, Samanamud GRL (2013) Advanced oxidative degradation processes: fundamentals and applications. Inter Rev Chem Eng 5(2):102–120

    Google Scholar 

  25. Jelonek P, Neczaj E (2012) The use of advanced oxidation processes (AOP) for the treatment of landfill leachate. Inżynieria i Ochrona Środowiska 15(2):203–217

    CAS  Google Scholar 

  26. Trapido M (2008) Ozone-based advanced oxidation processes, ozone science and technology. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of UNESCO, 1–17. http://www.eolss.net/sample-chapters/c07/e6-192-07a-00.pdf

  27. Kalra SS, Mohan S, Sinha A, Gurdeep Singh G (2011) Advanced oxidation processes for treatment of textile and dye wastewater: a review. 2nd international conference on environmental science and development IPCBEE, vol 4. IACSIT Press, Singapore, pp 271–275

    Google Scholar 

  28. Burgos AJ, Rodriguez PU, Lopez JS (2015) Advanced oxidation processes (AOPs), series: advanced treatments, technology fact sheets for effluent treatment plants of textile industry, INDITEX, FS-AVA-001, 1-27

    Google Scholar 

  29. Sharma S, Ruparelia JP, Patel ML (2011) A general review on advanced oxidation processes for waste water treatment. Institute of Technology, Nirma University, Ahmedabad – 382 481, 08-10 December, 1–7

    Google Scholar 

  30. Yu J, Savage PE (2000) Phenol oxidation over CuO/Al2O3 in supercritical water. Appl Catal Environ 28(3–4):275–288

    Article  CAS  Google Scholar 

  31. Matsumura Y, Urase T, Yamamoto K, Nunoura T (2002) Carbon catalyzed supercritical water oxidation of phenol. J Super Fluids 22(2):149–156

    Article  CAS  Google Scholar 

  32. Adewuyi YG, Peters RW (2013) Fundamental developments and economic feasibility of AOPs involving ultrasound for environmental remediation. Core Programming Area at the 2013 AIChE Annual Meeting: Global Challenges for Engineering a Sustainable Future, San Francisco, CA, USA, 3–8 Nov 2013. https://www3.aiche.org/Proceedings/content/Annual-2013/extended-abstracts/P342115.pdf

  33. Blanco M, Martinez A, Marcaide A, Aranzabe E, Aranzabe A (2014) Heterogeneous Fenton catalyst for the efficient removal of Azo dyes in water. Am J Anal Chem 5:490–499

    Article  CAS  Google Scholar 

  34. Sahu O, Paul D, Chaudhari PK (2014) A comparatively study on thermal and advance oxidation wastewater treatment process: review. J Chem Eng Chem Res 1(6):353–364

    CAS  Google Scholar 

  35. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420

    Article  CAS  Google Scholar 

  36. Somorjai GA, Rioux RM (2005) High technology catalysts towards 100% selectivity. Fabrication, characterization and reaction studies. Catal Today 100:201–215

    Article  CAS  Google Scholar 

  37. Fechete I, Wang Y, Vedrine JC (2012) The past, present and future of heterogeneous catalysis. Catal Today 189:2–27

    Article  CAS  Google Scholar 

  38. Buthiyappan A, Aziz ARA, Daud WMAW (2016) Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev Chem Eng 32(1):1–47

    Article  CAS  Google Scholar 

  39. Abramov VO, Abramov OV, Gekhman AE, Kuznetsov VM, Price GJ (2006) Ultrasonic intensification of ozone and electrochemical destruction of 1,3-dinitrobenzene and 2,4-dinitrotoluene. Ultrason Sonochem 13:303–307

    Article  CAS  Google Scholar 

  40. Arena F, Chio RD, Gumina B, Spadaro L, Trunfio G (2015) Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg Chim Acta 431:101–109

    Article  CAS  Google Scholar 

  41. Luck F (1996) A review of industrial catalytic wet air oxidation processes. Catal Today 27:195–202

    Article  CAS  Google Scholar 

  42. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  43. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – a review. Appl Catal Environ 176–177:249–265

    Article  CAS  Google Scholar 

  44. Eisenhauer HR (1964) Oxidation of phenolic wastes. J Water Pollut Control Fed 36:1116–1128

    CAS  Google Scholar 

  45. Sun JH, Sun SP, Fan MH, Guo HQ, Qiao LP, Sun RX (2007) A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J Hazard Mater 148:172–177

    Article  CAS  Google Scholar 

  46. Jiang C, Pang S, Ouyang F, Ma J, Jiang J (2010) A new insight into Fenton and Fenton like processes for water treatment. J Hazard Mater 174:813–817

    Article  CAS  Google Scholar 

  47. Awaleh MO, Soubaneh YD (2014) Waste water treatment in chemical industries: the concept and current technologies. Hydrol Current Res 5(1):1–12

    Google Scholar 

  48. Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environ Int 75:33–51

    Article  CAS  Google Scholar 

  49. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  50. Mackul'ak T, Prousek J, Švorc LU (2011) Degradation of atrazine by Fenton and modified Fenton reactions. Monatsh Chem 142:561–567

    Article  CAS  Google Scholar 

  51. Muruganandham M, Suri RPS, Jafari S, Sillanpää M, Lee GJ, Wu JJ, Swaminathan M (2014) Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. Int J Photoenergy 2014:21 p, Article ID 821674. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/821674

  52. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572

    Article  CAS  Google Scholar 

  53. Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4:762–787

    Article  CAS  Google Scholar 

  54. He J, Yang X, Men B, Wang D (2016) Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review. J Environ Sci 39:97–109

    Article  Google Scholar 

  55. Luiz DB, Jose HJ, Moreira RFPM (2012) A discussion paper on challenges and proposals for advanced treatments for potabilization of wastewater in the food industry. In: Valdez B (ed) Scientific, health and social aspects of the food industry. InTech, Rijeka, Croatia

    Google Scholar 

  56. Powell RM, Puls RW, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29:1913–1922

    Article  CAS  Google Scholar 

  57. Warren KD, Arnold RG, Bishop TL, Lindholm LG, Betterton EA (1995) Kinetics and mechanism of reductive dehalogenation of carbon tetrachloride using zerovalence metals. J Hazard Mater 41:217–227

    Article  CAS  Google Scholar 

  58. Joo SH, Feitz AJ, Waite TD (1995) X oxidative degradation of the carbothioate herbicide, molinate using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247

    Article  CAS  Google Scholar 

  59. Babuponnusami A, Muthukumar K (2012) Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Separ Purif Tech 98:130–135

    Article  CAS  Google Scholar 

  60. Bigda RJ (1995) Consider Fenton’s chemistry for wastewater treatment. Chem Eng Prog 91:62–66

    CAS  Google Scholar 

  61. Mesquita I, Matos LC, Duarte F, Maldonado-Hódar FJ, Mendes A, Madeira LM (2012) Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon. J Hazard Mater 237–238:30–37

    Article  CAS  Google Scholar 

  62. Duarte F, Maldonado-Hódar FJ, Madeira LM (2011) Influence of the characteristics of carbon materials on their behaviour as heterogeneous Fenton catalysts for the elimination of the azo dye Orange II from aqueous solutions. Appl Catal B 103:109–115

    Article  CAS  Google Scholar 

  63. Yuan SH, Gou N, Alshawabkeh AN, Gu AZ (2013) Efficient degradation of contaminants of emerging concerns by a new electro-Fenton process with Ti/MMO cathode. Chemosphere 93:2796–2804

    Article  CAS  Google Scholar 

  64. Sabhi S, Kiwi J (2001) Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water Res 35:1994–2002

    Article  CAS  Google Scholar 

  65. Sanabria NR, Molina R, Moreno S (2012) Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the posttreatment of coffee wastewater. Int J Photoenergy 2012:17 p. Article ID 864104. Hindawi Publishing Corporation. doi: 10.1155/2012/864104

    Article  CAS  Google Scholar 

  66. Zhou T, Lim TT, XH W (2011) Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands. Water Res 45:2915–2924

    Article  CAS  Google Scholar 

  67. Yang XJ, Tian PF, Zhang XM, Yu X, Wu T, Xu J, Han YF (2014) The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation. AIChE J 61:166–176

    Article  CAS  Google Scholar 

  68. Zhang C, Zhou MH, Ren GB, Yu XM, Ma L, Yang J, Yu FK (2015) Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res 70:414–424

    Article  CAS  Google Scholar 

  69. Soon AN, Hameed BH (2011) Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269(1–3):1–16

    Article  CAS  Google Scholar 

  70. Moreno S, Sanabria N, Molina R (2008) Chapter 4. Recent tendencies in the synthesis of pillared clays for phenol oxidation. In: Heikkine E (ed) Focus on water resource research. Nova Science Publisher, New York, NY, USA, pp 185–209

    Google Scholar 

  71. Rao TSRP, Dhar GM (1998) Recent advanced in basic and applied aspects of industrial catalysis. Elsevier Science B.V., Amsterdam, The Netherlands

    Google Scholar 

  72. Sanabria NR, Molina R, Moreno S (2012) Raschig rings based on pillared clays: efficient reusable catalysts for oxidation of phenol. J Advan Oxid Technol 15(1):117–124

    CAS  Google Scholar 

  73. Kim JK, Martinez F, Metcalfe IS (2007) The beneficial role of use of ultrasound in heterogeneous Fenton-like system over supported copper catalysts for degradation of p-chlorophenol. Catal Today 124(3–4):224–231

    Article  CAS  Google Scholar 

  74. Hassan H, Hameed BH (2011) Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of reactive blue 4. Chem Eng J 171(3):912–918

    Article  CAS  Google Scholar 

  75. Nguyen TD, Phan NH, Do MH, Ngo KT (2011) Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. J Hazard Mater 185(2–3):653–661

    Article  CAS  Google Scholar 

  76. Tian SH, YT T, Chen DS, Chen X, Xiong Y (2011) Degradation of acid Orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst. Chem Eng J 169(1–3):31–37

    Article  CAS  Google Scholar 

  77. Dukkanci M, Gunduz G, Yilmaz S, Prihod’ko RV (2010) Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J Hazard Mater 181(1–3):343–350

    Article  CAS  Google Scholar 

  78. Idel-aouad R, Valiente M, Yaacoubi A, Tanouti B, Lopez-Mesas M (2011) Rapid decolourization and mineralization of the azo dye C.I. Acid red 14 by heterogeneous Fenton reaction. J Hazard Mater 186(1):745–750

    Article  CAS  Google Scholar 

  79. Kuˇsi’c H, Koprivanac N, Selanec I (2006) Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance. Chemosphere 65(1):65–73

    Article  CAS  Google Scholar 

  80. Kuznetsova EV, Savinov EN, Vostrikova LA, Parmon VN (2004) Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Appl Catal B 51(3):165–170

    Article  CAS  Google Scholar 

  81. de la Plata GBO, Alfano OM, Cassano AE (2010) Decomposition of 2-chlorophenol employing goethite as Fenton catalyst II: reaction kinetics of the heterogeneous Fenton and photo-Fenton mechanisms. Appl Catal B 95(1–-2):14–25

    Article  CAS  Google Scholar 

  82. Costa RCC, Moura FCC, Ardisson JD, Fabris JD, Lago RM (2008) Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Appl Catal B 83(1–-2):131–139

    Article  CAS  Google Scholar 

  83. Moura FCC, Araujo MH, Costa RCC et al (2005) Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere 60(8):1118–1123

    Article  CAS  Google Scholar 

  84. Sun SP, Lemley AT (2011) P-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways. J Molec Catal A 349(1–2):71–79

    Article  CAS  Google Scholar 

  85. Mart’ınez F, Calleja G, Melero JA, Molina R (2005) Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Appl Catal B 60(3–4):181–190

    Article  CAS  Google Scholar 

  86. Molina R, Mart’ınez F, Melero JA, Bremner DH, Chakinala AG (2006) Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: multivariate study by factorial design of experiments. Appl Catal B 66(3–4):198–207

    Article  CAS  Google Scholar 

  87. Shukla P, Wang S, Sun H, Ang HM, Tad’e M (2010) Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chem Eng J 164(1):255–260

    Article  CAS  Google Scholar 

  88. Galeano LA, Vicente MA, Gil A (2011) Treatment of municipal leachate of landfill by fenton-like heterogeneous catalytic wet peroxide oxidation using an Al/Fe-pillared montmorillonite as active catalyst. Chem Eng J 178:146–153

    Article  CAS  Google Scholar 

  89. Luo M, Bowden D, Brimblecombe P (2009) Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2. Appl Catal B 85(3–-4):201–206

    Article  CAS  Google Scholar 

  90. Molina CB, Casas JA, Zazo JA, JJ R’ı (2006) A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chem Eng J 118(1–-2):29–35

    Article  CAS  Google Scholar 

  91. Munoz M, Dominguez CM, de Pedro ZM, Quintanilla A, Casas JA, Rodriguez JJ (2016) Degradation of imidazolium-based ionic liquids by catalytic wet peroxide oxidation with carbon and magnetic iron catalysts. J Chem Technol Biotechnol 91(11):2882–2887

    Article  CAS  Google Scholar 

  92. Munoz M, de Pedro ZM, Menendez N, Casas JA, Rodriguez JJ (2013) Appl Catal Environ 136–137:218–224

    Google Scholar 

  93. Xu L, Wang J (2011) A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J Hazard Mater 186:256–264

    Article  CAS  Google Scholar 

  94. Parra S, Henao L, Mielczarski E, Mielczarski J, Albers P, Suvorova E (2004) Synthesis, testing, and characterization of a novel nafion membrane with superior performance in photo assisted immobilized Fenton catalysis. Langmuir 20:5621–5629. http://dx.doi.org/10.1021/la049768d

    Article  CAS  Google Scholar 

  95. Aleksić M, Kušić H, Koprivanac N, Leszczynska D, Božić AL (2010) Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water-the application of zeolite assisted AOPs. Desalination 257:22–29. http://dx.doi.org/10.1016/j.desal.2010.03.016

    Article  CAS  Google Scholar 

  96. Gonzalez-Olmos R, Holzer F, Kopinke FD, Georgi A (2011) Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites. Appl Catal A Gen 398:44–53. http://dx.doi.org/10.1016/j.apcata.2011.03.005

    Article  CAS  Google Scholar 

  97. Gonzalez-Olmos R, Martin MJ, Georgi A, Kopinke FD, Oller I, Malato S (2012) Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Appl Catal Environ 125:51–58. http://dx.doi.org/10.1016/j.apcatb.2012.05.022

    Article  CAS  Google Scholar 

  98. Tekbas M, CengizYatmaz H, Bektas N (2008) Heterogeneous photo-Fenton oxidation of reactive Azo dye solutions using iron exchanged zeolite as a catalyst. Micropor Mesopor Mat 115:594–602. http://dx.doi.org/10.1016/j.micromeso.2008.03.001

    Article  CAS  Google Scholar 

  99. Pirkanniemi K, Sillanpää M (2002) Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48:1047–1060. http://dx.doi.org/10.1016/S0045-6535(02)00168-6

    Article  CAS  Google Scholar 

  100. Soon AN, Hameed BH (2013) Degradation of acid blue 29 in visible light radiation using iron modified mesoporous silica as heterogeneous photo-Fenton catalyst. Appl Catal A Gen 450:96–105. http://dx.doi.org/10.1016/j.apcata.2012.10.025

    Article  CAS  Google Scholar 

  101. Ramirez JH, Vicente MA, Madeira LM (2010) Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: review. Appl Catal Environ 98:10–26. http://dx.doi.org/10.1016/j.apcatb.2010.05.004

    Article  CAS  Google Scholar 

  102. Martínez F, Pariente MI, Ángel J, Botas JA, Melero JA, Rubalcaba A (2012) Influence of preoxidizing treatments on the preparation of iron-containing activated carbons for catalytic wet peroxide oxidation of phenol. J Chem Technol Biotechnol 87:880–886. http://dx.doi.org/10.1002/jctb.2744

    Article  CAS  Google Scholar 

  103. Santos A, Yustos P, Rodríguez S, Garcia-Ochoa F, de Gracia M (2007) Decolorization of textile dyes by wet oxidation using activated carbon as catalyst. Ind Eng Chem Res 46:2423–2427. http://dx.doi.org/10.1021/ie0614576

    Article  CAS  Google Scholar 

  104. Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350

    Article  CAS  Google Scholar 

  105. Tušar NN, Maucec D, Rangus M, Arcon I, Mazaj M, Cotman M, Pintar A, Kaucic V (2012) Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP). Adv Funct Mater 22:820–826

    Article  CAS  Google Scholar 

  106. Yao Y, Cai Y, Wu G, Wei F, Li X, Chen H, Wang S (2015) Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-like reaction in water. J Hazard Mater 296:128–137

    Article  CAS  Google Scholar 

  107. Rhadfi T, Piquemal JY, Sicard L, Herbst F, Briot E, Benedetti M, Atlamsani A (2010) Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Appl Catal A Gen 386:132–139

    Article  CAS  Google Scholar 

  108. Karthikeyan S, Boopathy R, Sekaran G (2015) In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater. J Colloid Interface Sci 448:163–174

    Article  CAS  Google Scholar 

  109. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776

    Article  CAS  Google Scholar 

  110. Pereira MC, Oliveira LCA, Murad E (2012) Iron oxide catalysts: Fenton and Fenton-like reactions – a review. Clay Miner 47:285–302

    Article  CAS  Google Scholar 

  111. Rahim Pouran S, Abdul Raman AA, Wan Daud WMA (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35

    Article  CAS  Google Scholar 

  112. Martins RC, Henriques LR, Quinta-Ferreira RM (2013) Catalytic activity of low cost materials for pollutants abatement by Fenton’s process. Chem Eng Sci 100:225–233

    Article  CAS  Google Scholar 

  113. Lee H, Kim BH, Park YK, Kim SJ, Jung SC (2015) Application of recycled zero-valent iron nanoparticle to the treatment of wastewater containing nitrobenzene. J Nanomater 2015:8 p. Article ID 392537. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2015/392537

    Google Scholar 

  114. Pereira WS, Freire RS (2006) Azo dye degradation by recycled waste zero-valent iron powder. J Braz Chem Soc 17(5):832–838

    Article  CAS  Google Scholar 

  115. Manu B, Mahamood S, Vittal H, Shrihari S (2011) A novel catalytic route to degrade paracetamol by Fenton process. Int J Res Chem Environ 1(1):157–164

    Google Scholar 

  116. Shahidi D, Roy R, Azzouz A (2015) Advances in catalytic oxidation of organic pollutants-prospects for thorough mineralization by natural clay catalysts. Appl Catal Environ 174:277–292

    Article  CAS  Google Scholar 

  117. Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ (2006) Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl Catal Environ 65:261–268

    Article  CAS  Google Scholar 

  118. Rey A, Faraldos M, Casas JA, Zazo JA, Bahamonde A, Rodriguez JJ (2009) Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: influence of iron precursor and activated carbon surface. Appl Catal Environ 86:69–77

    Article  CAS  Google Scholar 

  119. Bautista P, Mohedano AF, Menendez N, Casas JA, Rodriguez JJ (2010) Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catal Today 151:148–152

    Article  CAS  Google Scholar 

  120. Guo Y, Yang L, Cheng X, Xiangtao Wang X (2012) The application and reaction mechanism of catalytic ozonation in water treatment. J Environ Anal Toxicol 2:150. doi:10.4172/2161-0525.1000150

    Article  Google Scholar 

  121. Krzemińska D, Neczaj E, Borowski G (2015) Advanced oxidation processes for food industrial wastewater decontamination. Rev Article J Ecol Eng 16(2):61–71

    Article  Google Scholar 

  122. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal Environ 47:219–256

    Article  CAS  Google Scholar 

  123. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8(3–4):501–551

    Article  CAS  Google Scholar 

  124. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C Photochem Rev 7(4):127–144

    Article  CAS  Google Scholar 

  125. Weiss J (1935) Investigations on the radical HO2 in solution. Trans Faraday Soc 31:668–681

    Article  CAS  Google Scholar 

  126. Masschelein WJ (1992) Unit processes in drinking water treatment. Marcel Dekker, New York

    Google Scholar 

  127. Munter R (2001) Advanced oxidation processes – current status and prospects. Proc Est Acad Sci Chem 50(2):59–80

    CAS  Google Scholar 

  128. Wang JL, LJ X (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Tech 42:251–325

    Article  CAS  Google Scholar 

  129. Kasprzyk-Hordern B, Ziółek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal Environ 46:639–669

    Article  CAS  Google Scholar 

  130. Legube B, Leitner NKV (1999) Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal Today 53:61–72

    Article  CAS  Google Scholar 

  131. Abouzlam M, Ouvrard R, Mehdi D, Pontlevoy F, Gombert B, Leitner NKV, Boukari S (2013) An optimal control of a wastewater treatment reactor by catalytic ozonation. Control Eng Practice 21:105–112

    Article  Google Scholar 

  132. Abouzlam M, Ouvrard R, Mehdi D, Pontlevoy F, Gombert B, Leitner NKV, Boukari S (2015) A H control for optimizing the advanced oxidation processes-case of a catalytic ozonation reactor. Control Eng Practice 44:1–9

    Article  Google Scholar 

  133. Pirgalıoglu S, Ozbelge TA (2009) Comparison of non catalytic and catalytic ozonation processes of three different aqueous single dye solutions with respect to powder copper sulfide catalyst. Appl Catal A: General 363:157–163

    Article  CAS  Google Scholar 

  134. Munoz MSG (2010) Catalytic ozonation of pharmaceuticals in aqueous solution, PhD thesis, Alcala University

    Google Scholar 

  135. Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal Environ 99:27–42

    Article  CAS  Google Scholar 

  136. Azzouz A, Kotbi A, Niquette P, Sajin T, Ursu AV, Rami A, Monette F, Hausler R (2010) Ozonation of oxalic acid catalyzed by ion-exchanged montmorillonite in moderately acidic media. React Kinet Mech Catal 99:289–302

    CAS  Google Scholar 

  137. Liotta LF, Gruttadauria M, DiCarlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606

    Article  CAS  Google Scholar 

  138. Xiao J, Xie Y, Cao H (2015) Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121:1–17

    Article  CAS  Google Scholar 

  139. Pocostales P, Álvarez P, Beltrán FJ (2011) Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water. Chem Eng J 168:1289–1295

    Article  CAS  Google Scholar 

  140. Liu Y, Wang S, Gong W, Chen Z, Liu H, Bu Y, Zhang Y (2017) Heterogeneous catalytic ozonation of p-chloronitrobenzene (pCNB) in water with iron silicate doped hydroxylation iron as catalyst. Catal Commun 89:81–85

    Article  CAS  Google Scholar 

  141. Li B, Xu X, Zhu L, Ding W, Mahmood Q (2010) Catalytic ozonation of industrial wastewater containing chloro and nitro aromatics using modified diatomaceous porous filling. Desalination 254:90–98

    Article  CAS  Google Scholar 

  142. Wang J, Bai Z (2017) Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J 312:79–98

    Article  CAS  Google Scholar 

  143. Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219

    Article  CAS  Google Scholar 

  144. Orge CA, Órfão JJM, Pereira MFR (2012) Carbon xerogels and ceria–carbon xerogel materials as catalysts in the ozonation of organic pollutants. Appl Catal Environ 126:22–28

    Article  CAS  Google Scholar 

  145. Chen C, Yu J, Yoza BA, Li QX, Wang G (2015) A novel “wastes-treat-wastes” technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. J Environ Manage 152:58–65

    Article  CAS  Google Scholar 

  146. Gilbert E (2002) Influence of ozone on the photocatalytic oxidation of organic compounds. Ozone Sci Eng 24:75–82

    Article  CAS  Google Scholar 

  147. Rey A, Mena E, Chávez AM, Beltrán FJ, Medina F (2015) Influence of structural properties on the activity of WO3 catalysts for visible light photocatalytic ozonation. Chem Eng Sci 126:80–90

    Article  CAS  Google Scholar 

  148. Sreethawong T, Chavadej S (2008) Color removal of distillery wastewater by ozonation in the absence and presence of immobilized iron oxide catalyst. J Hazard Mater 155:486–493

    Article  CAS  Google Scholar 

  149. Jung H, Choi H (2006) Catalytic decomposition of ozone and parachlorobenzoic acid (pCBA) in the presence of nanosized ZnO. Appl Catal Environ 66:288–294

    Article  CAS  Google Scholar 

  150. Gharbani P, Mehrizad A (2014) Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions. J Saudi Chem Soc 18:601–605

    Article  CAS  Google Scholar 

  151. Hu E, Wu X, Shang S, Tao X, Jiang S, Gan L (2016) Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Clean Prod 112:4710–4718

    Article  CAS  Google Scholar 

  152. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, Oxford, pp 541–546

    Google Scholar 

  153. Shahidi D, Roy R, Azzouz A (2014) Total removal of oxalic acid via synergistic parameter interaction in montmorillonite catalyzed ozonation. J Environ Chem Eng 2:20–30

    Article  CAS  Google Scholar 

  154. Aly AA, Hasan YNY, Al-Farraj AS (2014) Olive mill wastewater treatment using a simple zeolite-based low-cost method. J Environ Manage 145:341–348

    Article  CAS  Google Scholar 

  155. Li H, Xu B, Qi F, Sun D, Chen Z (2014) Degradation of bezafibrate in wastewater by catalytic ozonation with cobalt doped red mud: efficiency, intermediates and toxicity. Appl Catal Environ 152:342–351

    Article  CAS  Google Scholar 

  156. Xu B, Qi F, Zhang J, Li H, Sun D, Robert D, Chen Z (2016) Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: catalyst surface properties characterization and reaction mechanism. Chem Eng J 284:942–952

    Article  CAS  Google Scholar 

  157. Wen G, Pan ZH, Ma J, Liu ZQ, Zhao L, Li JJ (2012) Reuse of sewage sludge as a catalyst in ozonation – efficiency for the removal of oxalic acid and the control of bromate formation. J Hazard Mater 239–240:381–388

    Article  CAS  Google Scholar 

  158. Wu J, Ma L, Chen Y, Cheng Y, Liu Y, Zha X (2016) Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: removal and pathways. Water Res 92:140–148

    Article  CAS  Google Scholar 

  159. Kamboj ML (2009) Studies on the degradation of industrial wastewater using heterogeneous photocatalysis master thesis. Thapar University, Patiala

    Google Scholar 

  160. Braslavsky SE, Houk KN (1988) Glossary of terms used in photochemistry. Pure Appl Chem 60:1055–1106

    Article  CAS  Google Scholar 

  161. Verhoven JW (1996) Glossary of terms used in photochemistry. Pure Appl Chem 68:2223–2286

    Article  Google Scholar 

  162. Cesaro A, Belgiorno V (2015) Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review. Open Biotechnol J 9:1–28

    Article  CAS  Google Scholar 

  163. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  164. Renge VC, Khedkar SV, Thanvi NJ (2012) Photocatalytic oxidation and reactors – a review. Int J Adv Eng Technol 3(4):31–35

    Google Scholar 

  165. Kaan CC, Aziz AA, Ibrahim S, Matheswaran M, Saravanan P (2012) Heterogeneous photocatalytic oxidation an effective tool for wastewater treatment – a review, studies on water management issues, Dr. Muthukrishnavellaisamy Kumarasamy (ed) ISBN: 978-953-307-961-5, InTech. [Online] http://www.intechopen.com/books/studies-on-water-managementissues/heterogeneous-photocatalytic-oxidation-an-effective-tool-for-wastewater-treatment-a-review

  166. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  CAS  Google Scholar 

  167. Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydro Energy 32:2664–2672

    Article  CAS  Google Scholar 

  168. Hoffmann HR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 69:95–101

    Google Scholar 

  169. Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW (2003) Removal of paraquat in aqueous suspension of TiO2 in an immersed UV photoreactor. Korean J Chem Eng 20(5):862–868

    Article  CAS  Google Scholar 

  170. Mok NB (2009) Photocatalytic degradation of oily wastewater: effect of catalyst concentration load, irradiation time and temperature. Bachelor thesis, Faculty of Chemical & Natural Resources Engineering, University Malaysia Pahang

    Google Scholar 

  171. Zhang T, Wang X, Zhang X (2014) Recent progress in TiO2-mediated solar photocatalysis for industrial wastewater treatment. Int J Photoenergy 12 p. Article ID 607954. Hindawi Publishing Corporation. [Online] http://dx.doi.org/10.1155/2014/607954

  172. Khataee AR, Zarei M, Ordikhani-Seyedlar R (2011) Heterogeneous photocatalysis of a dye solution using supported TiO2 nanoparticles combined with homogeneous photoelectrochemical process: molecular degradation products. J Molec Catal A Chem 338:84–91

    CAS  Google Scholar 

  173. Ahmed S, Rasul MG, Brown R, Hashi MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330

    Article  CAS  Google Scholar 

  174. Bockelmann D, Weichgrebe D, Goslich R, Bahnemann D (1995) Concentrating versus non-concentrating reactors for solar water detoxication. Sol Energ Mater Sol Cell 38:441–251

    Article  CAS  Google Scholar 

  175. Banu JR, Anandan S, Kaliappan S, Yeom IY (2008) Treatment of dairy wastewater using anaerobic and solar photocatalytic methods. Sol Energy 82:812–819

    Article  CAS  Google Scholar 

  176. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  177. Zhang H, Liu G, Shi L, Liu H, Wang T, Ye J (2016) Engineering coordination polymers for photocatalysis. Nano Energy 22:149–168

    Article  CAS  Google Scholar 

  178. Kumar P, Kumar S, Bhardwaj NK, Kumar S (2011) Titanium dioxide photocatalysis for the pulp and paper industry wastewater treatment. Ind J Sci Technol 4(3):327–332

    Google Scholar 

  179. Chen Q, Ji F, Guo Q, Fan J, Xu X (2014) Combination of heterogeneous Fenton-like reaction and photocatalysis using Co-TiO2 nanocatalyst for activation of KHSO5 with visible light irradiation at ambient conditions. J Environ Sci 26:2440–2450

    Article  Google Scholar 

  180. García-Muñoz P, Pliego G, Zazo JA, Bahamonde A, Casas JA (2016) Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. J Environ Chem Eng 4:542–548

    Article  CAS  Google Scholar 

  181. Sha Z, Sun J, Chan HSO, Jaenicke S, Wu J (2015) Enhanced photocatalytic activity of the AgI/UiO-66(Zr) composite for Rhodamine B degradation under visible-light irradiation. Chem Plus Chem 80(8):1321–1328. http://dx.doi.org/10.1002/cplu.201402430

    CAS  Google Scholar 

  182. Booshehri AY, Polo-Lopez MI, Castro-Alférez M, He P, Xu R, Rong W, Malato S, Fernández-Ibá˜nez P (2017) Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar compound parabolic collector for inactivation of pathogens in well water and secondary effluents. Catal Today 281:124–134

    Article  CAS  Google Scholar 

  183. Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal Environ 107:110–118

    Article  CAS  Google Scholar 

  184. Lam SM, Sin JC, Mohamed AR (2016) A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater Sci Semicond Process 47:62–84

    Article  CAS  Google Scholar 

  185. Shan AY, Ghaz TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A General 389:1–8

    Article  CAS  Google Scholar 

  186. Rajeshwar K, Chenthamarakshan CR, Goeringer S, Djukic M (2001) Titania based heterogeneous photocatalysis: materials mechanistic issues and implications for environmental remediation. Pure Appl Chem 73(12):1849–1860

    Article  CAS  Google Scholar 

  187. Murphy S (2012) Photocatalytic degradation of pharmaceuticals in aqueous solutions and development of new dye sensitised photocatalytic materials, PhD thesis, Dublin City University

    Google Scholar 

  188. Osarumwense JO, Amenaghawn NA, Aisien FA (2015) Heterogeneous photocatalytic degradation of phenol in aqueous suspension of periwinkle shell ash catalyst in the presence of UV from sunlight. J Eng Sci Technol 10(12):1525–1539

    Google Scholar 

  189. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2011) Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut 215(1–4):3–29

    Article  CAS  Google Scholar 

  190. Jin YX, Li GH, Zhang Y, Zhang YX, Zhang LD (2001) Photoluminescence of anatase TiO2 thin films achieved by the addition of ZnFe2O4. J Phys Condens Matter 13:L913–L918

    Article  CAS  Google Scholar 

  191. Belgiorno V, Rizzo L, Fatta D, Rocca CD, Lofrano G, Nikolaouc A, Naddeo V, Meric S (2007) Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination 215:166–176

    Article  CAS  Google Scholar 

  192. Hassan M, Zhao Y, Xie B (2016) Employing TiO2 photocatalysis to deal with landfill leachate: current status and development. Chem Eng J 285:264–275

    Article  CAS  Google Scholar 

  193. Singh S, Singh PK, Mahalingam H (2015) An effective and low-cost TiO2/polystyrene floating photocatalyst for environmental remediation. Int J Environ Res 9(2):535–544

    CAS  Google Scholar 

  194. Zimmermann FJ (1954) Waste disposal. US Patent No. 2 665 249, US Patent Office 6(10):630–631

    Google Scholar 

  195. Zimmermann FJ, Diddams DG (1960) The Zimmermann process and its application in the pulp and paper industry. TAPPI 43:710–715

    Google Scholar 

  196. Zou LY, Li Y, Hung YT (2007) Wet air oxidation for waste treatment. In: Wang LK, Hung YT, Shammas NK (eds) Advanced physicochemical treatment technologies. Handbook of Environmental Engineering, vol 5. Humana Press. https://doi.org/10.1007/978-1-59745-173-4_13

  197. Zou L, Zhu B (2006) Literature review report for smart water project “improving recycled water aesthetic quality by removing colour and trace organics.” Oxidation processes for degradation of organic pollutants in water. Institute of Sustainability and Innovation Victoria University

    Google Scholar 

  198. Roy S, Vashishtha M, Saroha AK (2010) Catalytic wet air oxidation of oxalic acid using platinum catalysts in bubble column reactor: a review. J Eng Sci Technol Rev 3(1):95–107

    Article  CAS  Google Scholar 

  199. Copa WM, Dietrich MJ (1988) Wet air oxidation of oils, oil refinery sludges, and spent drilling muds. ZIMPRO/PASSAVANT INC., Apr 1988. [Online] http://infohouse.p2ric.org/ref/25/24892.pdf

  200. Siemens Water Technologies Corp (2011) Can you treat the most difficult wastewater with only air?, Zimpro® wet air oxidation systems: the cleanest way to treat the dirtiest water, answers for industry, Siemens Water Technologies Corp, GIS-WAO-BR-0111. [Online] http://www.energy.siemens.com/hq/pool/hq/industries-utilities/oil-gas/water-solutions/Zimpro-Wet-Air-Oxidation-System-The-Cleanest-Way.pdf

  201. Gaikwad RW, Malik I, Kulkarni V, Mhaske S, Badadhe S (2016) Review on catalytic wet air oxidation. Int J Environ Natural Sci 9:1–8

    Google Scholar 

  202. Debellefontaine H, Foussard JN (2000) Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manag 20:15–25

    Article  CAS  Google Scholar 

  203. Kolaczkowski ST, Plucinski P, Beltran FJ, Rivas FJ, McLurgh DB (1999) Wet air oxidation: a review of process technologies and aspects in reactor design. Chem Eng J 73:143–160

    Article  CAS  Google Scholar 

  204. Ovejero G, Sotelo JL, Garcia J, Rodrıguez A (2005) Catalytic removal of phenol from aqueous solutions in a trickle bed reactor. J Chem Technol Biotechnol 80:406–412

    Article  CAS  Google Scholar 

  205. Rodr’ıguez A, Ovejero G, Romero MD, Diaz C, Barreiro M, Garcia J (2008) Catalytic wet air oxidation of textile industrial wastewater using metal supported on carbon nanofibers. J Super Fluids 46:163–172

    Article  CAS  Google Scholar 

  206. Hong TY (2013) Catalytic wet air oxidation of wastewater containing acetic acid. BSc thesis, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang

    Google Scholar 

  207. Moses DV, Smith EA (1954) Wet air oxidation of aqueous wastes, US Patent 2,690,425

    Google Scholar 

  208. Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184

    Article  CAS  Google Scholar 

  209. Luck F (1999) Wet air oxidation: past, present and future. Catal Today 53:81–91

    Article  CAS  Google Scholar 

  210. Hosseini AM (2013) Intensification of wet oxidation of industrial process wastewater. Department of Chemical and Environmental Process Engineering of BME and Centre of Energy Research of Hungarian Academy of Sciences

    Google Scholar 

  211. Trunfio G Catalyst development for the catalytic wet air oxidation (CWAO) of phenol. Thesis for the degree of Doctor of Philosophy in “Chemical Technologies and Innovative Processes,” University of Messina, Area 03-Scienze Chimiche (CHIM 04), CYCLE XXI (2006–2008)

    Google Scholar 

  212. Oliviero L, Barbier J, Duprez D (2003) Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media. Appl Catal Environ 40:163–184

    Article  CAS  Google Scholar 

  213. Erjavec B, Kaplana R, Djinovic P, Pintar A (2013) Catalytic wet air oxidation of bisphenol a model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Appl Catal Environ 132-133:342–352

    Article  CAS  Google Scholar 

  214. Modi RR, Vyas DS, Patel SM (2016) Catalytic wet air oxidation of dye industry wastewater using metallic catalyst. IJARIIE 2(3):461–469

    Google Scholar 

  215. Jani HR (2008) Catalytic wet air oxidation of pulp and paper mills effluent. PhD thesis, School of Applied Sciences, Science, Engineering, and Technology Portfolio, RMIT University

    Google Scholar 

  216. Gomes HT, Figueiredo JL, Faria JL (2007) Catalytic wet air oxidation of olive mill wastewater. Catal Today 124:254–259

    Article  CAS  Google Scholar 

  217. Imamura S (1999) Catalytic and noncatalytic wet oxidation. Ind Eng Chem Res 38:1743–1753

    Article  CAS  Google Scholar 

  218. Matatov-Meytal Y, Sheintuch M (1998) Catalytic abatement of water pollutants. Ind Eng Chem Res 37:309–326

    Article  CAS  Google Scholar 

  219. Eftaxias A (2002) Catalytic wet air oxidation of phenol in a trickle bed reactor: kinetics and reactor modelling, PhD thesis, Escola T’ecnica Superior de Enginyeria Qu’ımica, Departament d’Enginyeria Qu’ımica, Universitat Rovira i Virgili, Tarragona

    Google Scholar 

  220. Katsoni A, Gomes HT, Pastrana-Martínez LM, Faria JL, Figueiredoc JL, Mantzavinos D, Silva AMT (2011) Degradation of trinitrophenol by sequential catalytic wet air oxidation and solar TiO2 photocatalysis. Chem Eng J 172:634–640

    Article  CAS  Google Scholar 

  221. Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A (2005) Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Topics Catal 33:3–50

    Article  CAS  Google Scholar 

  222. Morales-Torres S, Silva AMT, Pérez-Cadenas AF, Faria JL, Maldonado-Hódar FJ, Figueiredo JL, Carrasco-Marín F (2010) Wet air oxidation of trinitrophenol with activated carbon catalysts: effect of textural properties on the mechanism of degradation. Appl Catal Environ 100:310–317

    Article  CAS  Google Scholar 

  223. Gomes HT, Machado BF, Ribeiro A, Moreira I, Rosário M, Silva AMT, Figueiredo JL, Faria JL (2008) Catalytic properties of carbon materials for wet oxidation of aniline. J Hazard Mater 159:420–426

    Article  CAS  Google Scholar 

  224. Apolinário AC, Silva AMT, Machado BF, Gomes HT, Araújo PP, Figueiredo JL, Faria JL (2008) Wet air oxidation of nitro-aromatic compounds: reactivity on single- and multi-component systems and surface chemistry studies with a carbon xerogel. Appl Catal Environ 84:75–86

    Article  CAS  Google Scholar 

  225. Yang S, Zhu W, Li X, Wang J, Zhou Y (2007) Multi-walled carbon nanotubes (MWNTs) as an efficient catalyst for catalytic wet air oxidation of phenol. Catal Commun 8:2059–2063

    Article  CAS  Google Scholar 

  226. Yang S, Li X, Zhu W, Wang J, Descorme C (2008) Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon 46:445–452

    Article  CAS  Google Scholar 

  227. Rocha RP, Sousa JP, Silva AMT, Pereira MFR, Figueiredo JL (2011) Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: the role of the basic nature induced by the surface chemistry. Appl Catal Environ 104:330–336

    Article  CAS  Google Scholar 

  228. Sousa JPS, Silva AMT, Pereira MFR, Figueiredo JL (2010) Wet air oxidation of aniline using carbon foams and fibers enriched with nitrogen. Sep Sci Technol 45:1546–1554

    Article  CAS  Google Scholar 

  229. Yang S, Cui Y, Sun Y, Yang H (2014) Graphene oxide as an effective catalyst for wet air oxidation of phenol. J Hazard Matter 280:55–62

    Article  CAS  Google Scholar 

  230. Zhang Y, Peng F, Zhou Y (2016) Structure, characterization, and dynamic performance of a wet air oxidation catalyst Cu-Fe-La/γ-Al2O3. Chin J Chem Eng 24:1171–1177

    Article  CAS  Google Scholar 

  231. Nakatsuji T, Kunishige M, Li J, Hashimoto M, Matsuzono Y (2013) Effect of CeO2 addition into Pd/Zr–Pr mixed oxide on three-way catalysis and thermal durability. Catal Comm 35:88–94

    Article  CAS  Google Scholar 

  232. Bernardi M, ML D, Dodouche I, Descorme C, Deleris S, Blanchet E, Besson M (2012) Selective removal of the ammonium-nitrogen in ammonium acetate aqueous solutions by catalytic wet air oxidation over supported Pt catalysts. Appl Catal Environ 128:64–71

    Article  CAS  Google Scholar 

  233. Wang C, Wang GR, Wang JF (2014) A bi-component Cu catalyst for the direct synthesis of methylchlorosilane from silicon and methyl chloride. Chin J Chem Eng 22:299–304

    Article  CAS  Google Scholar 

  234. Massa P, Ivorra F, Haure P, Fenoglio R (2011) Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems. J Hazard Mater 190:1068–1073

    Article  CAS  Google Scholar 

  235. Fazlollahi F, Sarkari M, Gharebaghi H, Atashi H, Zarei MM, Mirzaei AA, Hecker WC (2013) Preparation of Fe–Mn/K/Al2O3 Fischer–Tropsch catalyst and its catalytic kinetics for the hydrogenation of carbon monoxide. Chin J Chem Eng 21:507–519

    Article  CAS  Google Scholar 

  236. Wenbing M, Hongpeng L, Xuemei M (2013) Study on supercritical water oxidation of oily wastewater with ethanol. Res J Appl Sci Eng Technol 6(6):1007–1011

    Google Scholar 

  237. Bambang V, Jae-Duck K (2007) Supercritical water oxidation for the destruction of toxic organic wastewaters: a review. J Environ Sci 19:513–522

    Article  Google Scholar 

  238. Fourcault A, Garcia-Jarana B, Sanchez-Oneto J, Mariasa F, Portela JR (2009) Supercritical water oxidation of phenol with air. Experimental results and modeling. Chem Eng J 152:227–233

    Article  CAS  Google Scholar 

  239. Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485

    Article  CAS  Google Scholar 

  240. Xu D, Wang S, Tang X, Gong Y, Guo Y, Wang Y, Zhang J (2012) Design of the first pilot scale plant of China for supercritical water oxidation of sewage sludge. Chem Eng Res Des 90:288–297

    Article  CAS  Google Scholar 

  241. Han D, Zhang H, Fang L, Lin C (2015) Continuous monitoring of total organic carbon based on supercritical water oxidation improved by CuSO4 catalyst. J Anal Bioanal Tech S13:002. doi:10.4172/2155-9872.S13-002

    Article  Google Scholar 

  242. Marrone PA (2013) Supercritical water oxidation-current status of full-scale commercial activity for waste destruction. J Super Fluids 79:283–288

    Article  CAS  Google Scholar 

  243. Li X, Li G (2015) A review: pharmaceutical wastewater treatment technology and research in China. Asia-Pacific energy equipment engineering research conference (AP3ER 2015), pp 345–348

    Google Scholar 

  244. Youngprasert B, Poochinda K, Ngamprasertsith S (2010) Treatment of acetonitrile by catalytic supercritical water oxidation in compact-sized reactor. J Water Resource Protect 2:222–226

    Article  CAS  Google Scholar 

  245. Dong X, Gan Z, Lu X, Jin W, Yu Y, Zhang M (2015) Study on catalytic and non-catalytic supercritical water oxidation of p-nitrophenol wastewater. Chem Eng J 277:30–39

    Article  CAS  Google Scholar 

  246. Yu L, Han M, He F (2017) A review of treating oily wastewater. Arabian J Chem 10:S1913–S1922

    Article  CAS  Google Scholar 

  247. Medoll M (1982) Processing methods for the oxidation of organics in supercritical water. US Patent 4,338,199

    Google Scholar 

  248. Abelleira J, Sánchez-Oneto J, Portela JR, Martínez de la Ossa EJ (2013) Kinetics of supercritical water oxidation of isopropanol as an auxiliary fuel and co-fuel. Fuel 111:574–583

    Article  CAS  Google Scholar 

  249. Ding ZY, Frisch MA, Li L, Gloyna EF (1996) Catalytic oxidation in supercritical water. Ind Eng Chem Res 35:3257–3279

    Article  CAS  Google Scholar 

  250. Tomita K, Oshima Y (2004) Stability of manganese oxide in catalytic supercritical water oxidation of phenol. Ind Eng Chem Res 43:7740–7743

    Article  CAS  Google Scholar 

  251. Silva CLD, Garlapalli RK, Trembly JP (2017) Removal of phenol from oil/gas produced water using supercritical water treatment with TiO2 supported MnO2 catalyst. J Environ Chem Eng 5:488–493

    Article  CAS  Google Scholar 

  252. Arslan-Alaton I, Ferry JL (2002) H4SiW12O40-catalyzed oxidation of nitrobenzene in supercritical water: kinetic and mechanistic aspects. Appl Catal B-Environ 38:283–293

    Article  CAS  Google Scholar 

  253. Nunoura T, Lee G, Matsumura Y, Yamamoto K (2003) Reaction engineering model for supercritical water oxidation of phenol catalyzed by activated carbon. Ind Eng Chem Res 42:3522–3531

    Article  CAS  Google Scholar 

  254. Krajnc M, Levec J (1997) Oxidation of phenol over a transition-metal oxide catalyst in supercritical water. Ind Eng Chem Res 36:3439–3445

    Article  CAS  Google Scholar 

  255. Ding ZY, Aki SN, Abraham MA (1995) Catalytic supercritical water oxidation: phenol conversion and product selectivity. Environ Sci Technol 29:2748–2753

    Article  CAS  Google Scholar 

  256. Zhang X, Savage PE (1998) Fast catalytic oxidation of phenol in supercritical water. Catal Today 40:333–342

    Article  CAS  Google Scholar 

  257. Yu J, Savage PE (2000) Kinetics of catalytic supercritical water oxidation of phenol over TiO2. Environ Sci Technol 34:3191–3198

    Article  CAS  Google Scholar 

  258. Yu J, Savage PE (1999) Catalytic oxidation of phenol over MnO2 in supercritical water. Ind Eng Chem Res 38:3793–3801

    Article  CAS  Google Scholar 

  259. Angeles-Hernández MJ, Leeke GA, Santos RC (2008) Catalytic supercritical water oxidation for the destruction of quinoline over MnO2/CuO mixed catalyst. Ind Eng Chem Res 48:1208–1214

    Article  CAS  Google Scholar 

  260. Civan F, Özaltun DH, Kıpcak E, Akgün M (2015) The treatment of landfill leachate over Ni/Al2O3 by supercritical water oxidation. J Super Fluids 100:7–14

    Article  CAS  Google Scholar 

  261. Aki SNVK, Abraham MA (1998) An economic evaluation of catalytic supercritical water oxidation: comparison with alternative waste treatment technologies. Environ Prog Sustain Energy 17(4):246–255

    CAS  Google Scholar 

  262. Lee G, Nunoura T, Matsumura Y, Yamamoto K (2002) Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phe-nol in supercritical water and under supercritical water oxidation conditions. J Super Fluids 24:239–250

    Article  CAS  Google Scholar 

  263. Qi XH, Zhuan YY, Yuan YC, WX G (2002) Decomposition of aniline in supercritical water. J Hazard Mater B 90:51–62

    Article  CAS  Google Scholar 

  264. Kazemi N, Tavakoli O, Seif S, Nahangi M (2015) High-strength distillery wastewater treatment using catalytic sub- and supercritical water. J Super Fluids 97:74–80

    Article  CAS  Google Scholar 

  265. Chen JH, Ma CY, Xi DL, Li Q (2011) Study on catalytic supercritical water oxidation process for treating the perfume waste water. Environ Eng 29:36–39

    CAS  Google Scholar 

  266. Lin KS, Wang HP (2000) Supercritical water oxidation of 2-chlorophenol catalyzed by Cu2+ cations and copper oxide clusters. Environ Sci Technol 34:4849–4854

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahryar Jafarinejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jafarinejad, S. (2017). Cost-Effective Catalytic Materials for AOP Treatment Units. In: Gil, A., Galeano, L., Vicente, M. (eds) Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. The Handbook of Environmental Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/698_2017_77

Download citation

Publish with us

Policies and ethics