Skip to main content

Metal Ecotoxicology in Fluvial Biofilms: Potential Influence of Water Scarcity

  • Chapter
  • First Online:
Water Scarcity in the Mediterranean

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 8))

Abstract

Human activity is responsible for the entrance of toxic substances into aquatic ecosystems. These substances entail a risk for the components of the ecosystem (toxicological stress). As a result of global change, aquatic ecosystems are under strong environmental stress due to changes in water flow or nutrient concentration among others. This chapter presents a review of experimental and field studies addressing metal effects on fluvial biofilms and their implications for understanding the potential influence of water scarcity on the fate and effects of metals in fluvial systems. Water scarcity might increase metal exposure (due to low dilution), uptake (due to higher retention under low flow), toxicity and/or accumulation (depending on the dose and time of exposure) but may also cause opposite effects depending on the source of pollution. In addition, the influence that water scarcity might have on nutrient loads will also modulate the fate and effects of metals. Future studies addressing the role of environmental stress on the effects of toxicants at a community scale will be fundamental to predict the impact of toxicants in the aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257

    Article  Google Scholar 

  2. Armitage PD, Bowes MJ, Vincet HM (2007) Long-term changes in macroinvertebrate communities of a heavily metal polluted stream: the river Went (Cumbria, U.K.) after 28 years. River Res Appl 23:997

    Article  Google Scholar 

  3. Sanchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global Planet Change 44:163

    Article  Google Scholar 

  4. Guo L, Kelley K, Goh KS (2007) Evaluation of sources and loadings of pesticidas to the Sacrameto river, California, USA, during a storm event of winter. Environ Toxicol Chem 26:2274

    Article  CAS  Google Scholar 

  5. Caruso BS, Cox LTJ, Runkel RL, Velleux ML, Bencala KE, Nordstrom DK, Julien PY, Butler BA, Alpers CN, Marion A, Smith KS (2008) Metals fate and transport modelling in streams and watersheds: state of the science and SEPA workshop review. Hydrol Process 22:4011

    Article  Google Scholar 

  6. Coynel A, Schäfer J, Dabrin A, Girardot N, Blanc G (2007) Groundwater contributions to metal transport in a small river affected by mining and smelting waste. Wat Res 41:3420

    Article  CAS  Google Scholar 

  7. Bambic DG, Alpers CN, Green PG, Fanellid E, Silo WK (2006) Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc. Environ Poll 144:774

    Article  CAS  Google Scholar 

  8. Butler AB, Ranville JF, Ross PE (2008) Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, and Zn in a mining-impacted stream. Wat Res 42:3135

    Article  CAS  Google Scholar 

  9. Fianko JR, Osae S, Adomako D, Adotey DK, Serfor-Armah Y (2007) Assessment of heavy metal pollution of the iture estuary in the central region of Ghana. Environ Monit Assess 131:467

    Article  CAS  Google Scholar 

  10. Benson NU, Etesin UM (2008) Metal contamination of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River and environmental impact due to Utapete gas flare station, Nigeria. Environmentalist 28:195

    Article  Google Scholar 

  11. Tarras-Wahlberg NH, Lane SN (2003) Suspended sediment yield and metal contamination in a river catchment affected by El Niño events and gold mining activities: the Puyango river basin, southern Ecuador. Hydrol Process 17:3101

    Article  Google Scholar 

  12. Besser JM, Brumbaugh WG, May TW, Schmitt CJ (2007) Biomonitoring of lead, zinc, and cadmium in streams draining lead-mining and non-mining areas, Southeast Missouri, USA. Environ Monit Assess 129:227

    Article  CAS  Google Scholar 

  13. Brown JN, Peacke BM (2006) Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Sci Tot Environ 59:145

    Google Scholar 

  14. Bay S, Jones HB, Schiff K, Washburn L (2003) Water quality impacts of stormwater discharges to Santa Monica Bay. Mar Environ Res 56:205

    Article  CAS  Google Scholar 

  15. Schiff K, Bay S, Diehl D (2003) Stormwater toxicity in Chollas Creek and San Diego Bay, California. Environ Monit Assess 81:119

    Article  CAS  Google Scholar 

  16. Meylan S, Behra R, Sigg L (2003) Accumulation of Cu and Zn in periphyton in response to dynamic variations of metal speciation in freshwater. Environ Sci Technol 37:5204

    Article  CAS  Google Scholar 

  17. Muller A, Heininger P, Wessels M, Pelzer J, Grünwald K, Pfitzner S, Berger M (2002) Contaminant levels and ecotoxicological effects in sediments of the river Odra. Acta Hydrochim Hydrobiol 30:244–255

    Article  Google Scholar 

  18. Sabater S, Navarro E, Guasch H (2002) Effects of copper on algal communities at different current velocities. J Appl Phycol 14:391

    Article  CAS  Google Scholar 

  19. Serra A, Guasch H, Martí E, Geiszinger A (2009) Measuring in-stream retention of copper by means of constant rate additions. Sci Tot Environ 407:3847

    Article  CAS  Google Scholar 

  20. Boeije GM, Schowanek DR, Vanrilleghem A (2000) Incorporation of biofilm activity in river biodegradation modeling: a case study for linear alkylbenzene sulphonate (LAS). Wat Res 34:1479

    Article  CAS  Google Scholar 

  21. Behra R, Landwehrjohann R, Vogel K, Wagner B, Sigg L (2002) Copper and Zinc content of periphyton from two rivers as function of dissolved metal concentration. Aquat Sci 64:300

    Article  CAS  Google Scholar 

  22. Clements WH, Newman MC (2002) In: Newman MC (ed) Community ecotoxicology, hierarchical ecotoxicology series. Wiley, New York, p 336

    Chapter  Google Scholar 

  23. Sabater S, Guasch H, Ricart M, Romaní AM, Vidal G, Klünder C, Schmitt-Jansen M (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425

    Article  CAS  Google Scholar 

  24. McClellan K, Altenburger R, Schmitt-Jansen M (2008) Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. J Appl Ecol 45:1514

    Article  CAS  Google Scholar 

  25. Blanck H, Admiraal W, Cleven RFMJ, Guasch H, van den Hoop MAGT, Ivorra N, Nyström B, Paulsson M, Petterson RP, Sabater S, Tubbing GMJ (2003) Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. Arch Environ Contam Toxicol 44:17

    Article  CAS  Google Scholar 

  26. Gold C, Feurtet-Mazel A, Coste M, Boudou A (2003) Effects of cadmium stress on periphytic diatom communities in indoor artificial streams. Freshw Biol 48:316

    Article  CAS  Google Scholar 

  27. Pesce S, Fajon C, Bardot C, Bonnemoy F, Portelli C, Bohatier J (2006) Effect of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquat Toxicol 78:303

    Article  CAS  Google Scholar 

  28. Paulsson M, Månsson V, Blanck H (2002) Effects of zinc on the phosphorus availability to periphyton communities from the river Göta Älv. Aquat Toxicol 56:103

    Article  CAS  Google Scholar 

  29. Schmitt-Jansen M, Altenburger R (2005) Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions. Environ Toxicol Chem 24:304

    Article  CAS  Google Scholar 

  30. Guasch H, Leira M, Montuelle B, Geiszinger A, Roulier JL, Tornés E, Serra A (2009) Use of multivariate analyses to investigate the contribution of metal pollution to diatom species composition: search for the most appropriate cases and explanatory variables. Hydrobiologia 627:143

    Article  CAS  Google Scholar 

  31. Navarro E, Guasch H, Sabater S (2002) Use of microbenthic algal communities in ecotoxicological tests for the assessment of water quality: the Ter river case study. J Appl Phycol 14:41

    Article  Google Scholar 

  32. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113

    Article  CAS  Google Scholar 

  33. Newman MC, McIntosh AW (1989) Appropriateness of aufwuchs as a monitor of bioaccumulation. Environ Pollut 60:83

    Article  CAS  Google Scholar 

  34. Morin S, Duong TT, Herlory O, Feurtet-Mazel A, Coste M (2008) Cadmium toxicity and bioaccumulation in freshwater biofilms. Arch Environ Contam Toxicol 54:173

    Article  CAS  Google Scholar 

  35. Serra A, Guasch H, Corcoll N (2009) Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history. Chemosphere 74:633

    Article  CAS  Google Scholar 

  36. Stauber JL, Davies CM (2000) Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environ Rev 8:255–301

    Article  CAS  Google Scholar 

  37. Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71:307

    Article  CAS  Google Scholar 

  38. Zhang W, Majidi V (1994) Monitoring the cellular response of Stichococcus bacillaris exposure of several different metals using in vivo 31P NMR and other spectroscopic techniques. Environ Sci Technol 28:1577

    Article  CAS  Google Scholar 

  39. Fisher NS, Reinfelder JR (1995) The trophic transfer of metals in marine systems. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, p 363

    Google Scholar 

  40. Hill WR, Bednarek AT, Larsen IL (2000) Cadmium sorption and toxicity in autotrophic biofilms. Can J Fish Aquat Sci 57:530

    Article  CAS  Google Scholar 

  41. Meylan S, Odzak N, Behra R, Sigg L (2004) Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. An Chim Acta 510:91

    Article  CAS  Google Scholar 

  42. Meador JP, Sibley TH, Swartzman GL, Taub FG (1998) Copper tolerance by the freshwater algal species Oocystis pusilla and its ability to alter free-ion copper. Aquat Toxicol 44:69

    Article  CAS  Google Scholar 

  43. Loaec M, Olier R, Guezennec J (1997) Uptake of lead, cadmium and zinc by a novel bacterial expolysaccharide. Wat Res 31:1171

    Article  CAS  Google Scholar 

  44. Admiraal W, Blanck H, Buckert-de Jong M, Guasch H, Ivorra N, Lehmann V, Nyström BAH, Paulsson M, Sabater S (1999) Short-term toxicity of zinc to microbenthic algae and bacteria in a small polluted stream. Wat Res 33:1989

    Article  CAS  Google Scholar 

  45. Lau YL (1990) Uptake of lead, cadmium and zinc by a novel bacterial expolysaccharide. Wat Res 24:1269

    Article  CAS  Google Scholar 

  46. Liehr SK, Chen H-J, Lin S-H (1994) Metals removal by algal biofilms. Water Sci Technol 11:59

    Google Scholar 

  47. Guasch H, Admiraal W, Sabater S (2003) Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquat Toxicol 64:165

    Article  CAS  Google Scholar 

  48. Serra A (2009) Fate and effects of copper in fluvial ecosystems: the role of periphyton. PhD Thesis, University of Girona

    Google Scholar 

  49. Serra A, Guasch H (2009). Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. Sci Tot Environ 407:5274

    Article  CAS  Google Scholar 

  50. Martí E, Aumatell J, Godé L, Poch M, Sabater F (2004) Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. J Environ Qual 33:285

    Article  Google Scholar 

  51. Guasch H, Navarro E, Serra A, Sabater S (2004) Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshw Biol 49:463

    Article  CAS  Google Scholar 

  52. Barranguet C, Plans M, Van der Grinten E, Sinke JJ, Admiraal W (2002) Development of photosynthetic biofilms affected by dissolved and sorbed copper in a eutrophic river. Environ Toxicol Chem 21:1955

    Article  CAS  Google Scholar 

  53. Guasch H, Paulsson M, Sabater S (2002) Effect of copper on algal communities from oligotrophic calcareous streams. J Phycol 38:241

    Article  CAS  Google Scholar 

  54. Soldo D, Behra R (2000) Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquat Toxicol 47:181

    Article  CAS  Google Scholar 

  55. Posthuma L, Suter GW, Traas TP (eds) (2001) Species sensitivity distributions in ecotoxicology. CRC press, Boca Raton, FL

    Google Scholar 

  56. Genter RB, Cherry DS, Smith EP, Cairns J Jr (1987) Algal-periphyton population and community changes from zinc stress in stream mesocosms. Hydrobiologia 153:261

    Article  CAS  Google Scholar 

  57. Navarro E, Robinson CT, Behra R (2008) Increased tolerance to ultraviolet radiation (UVR) and cotolerance to cadmium in UVR-acclimatized freshwater periphyton. Limnol Oceanogr 53:1149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The “Serveis Científics i Tècnics” at the University of Girona provided its facilities and technical help for ICP-MS metal analysis. The research was funded by the Spanish Ministry of Science and Education (FLUVIALFITOMARC CGL2006-12785), and the EC Sixth Framework Program (MODELKEY 511237-2 GOCE and KEYBIOEFFECTS MRTN-CT-2006-035695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Guasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Guasch, H., Serra, A., Corcoll, N., Bonet, B., Leira, M. (2010). Metal Ecotoxicology in Fluvial Biofilms: Potential Influence of Water Scarcity. In: Sabater, S., Barceló, D. (eds) Water Scarcity in the Mediterranean. The Handbook of Environmental Chemistry(), vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_25

Download citation

Publish with us

Policies and ethics