Skip to main content

Pathophysiology of Spinal Cord Injury and Tissue Engineering Approach for Its Neuronal Regeneration: Current Status and Future Prospects

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 18

Abstract

A spinal cord injury (SCI) is a very debilitating condition causing loss of sensory and motor function as well as multiple organ failures. Current therapeutic options like surgery and pharmacotherapy show positive results but are incapable of providing a complete cure for chronic SCI symptoms. Tissue engineering, including neuroprotective or growth factors, stem cells, and biomaterial scaffolds, grabs attention because of their potential for regeneration and ability to bridge the gap in the injured spinal cord (SC). Preclinical studies with tissue engineering showed functional recovery and neurorestorative effects. Few clinical trials show the safety and efficacy of the tissue engineering approach. However, more studies should be carried out for potential treatment modalities. In this review, we summarize the pathophysiology of SCI and its current treatment modalities, including surgical, pharmacological, and tissue engineering approaches following SCI in preclinical and clinical phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afshary K, Chamanara M, Talari B, Rezaei P, Nassireslami E (2020) Therapeutic effects of minocycline pretreatment in the locomotor and sensory complications of spinal cord injury in an animal model. J Mol Neurosci 70(7):1064–1072

    Article  CAS  PubMed  Google Scholar 

  • Ahuja CS, Wilson JR, Nori S, Kotter MR, Druschel C, Curt A, Fehlings MG (2017) Nat Rev Dis Primers 3(1):1–21

    Article  Google Scholar 

  • Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 22(10):282

    Article  Google Scholar 

  • Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL (2007) Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 7(1):1–4

    Article  Google Scholar 

  • An N, Yang J, Wang H, Sun S, Wu H, Li L et al (2021) Mechanism of mesenchymal stem cells in spinal cord injury repair through macrophage polarization. Cell Biosci 11(1)

    Google Scholar 

  • Anker PS, Scherjon SA, Kleijburg-Van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549

    Article  Google Scholar 

  • Araújo MR, Kyrylenko S, Spejo AB, Castro MV, Junior RS, Barraviera B, Oliveira AL (2017) Transgenic human embryonic stem cells overexpressing FGF2 stimulate neuroprotection following spinal cord ventral root avulsion. Exp Neurol 294:45–57

    Article  PubMed  Google Scholar 

  • Arslan YE, Efe B, Sezgin AT (2019) A novel method for constructing an acellular 3D biomatrix from bovine spinal cord for neural tissue engineering applications. Biotechnol Prog 35(4):e2814

    Article  PubMed  Google Scholar 

  • Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, Couillard-Despres S, Aigner L (2021) Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discov Today 26(7):1642–1655

    Article  CAS  PubMed  Google Scholar 

  • Astaneh ME, Goodarzi A, Khanmohammadi M, Shokati A, Mohandesnezhad S, Ataollahi MR, Najafipour S, Farahani MS, Ai J (2020) Chitosan/gelatin hydrogel and endometrial stem cells with subsequent atorvastatin injection impact in regenerating spinal cord tissue. J Drug Deliv Sci Technol 58:101831

    Article  CAS  Google Scholar 

  • Babcock L, Olsen CS, Jaffe DM, Leonard JC (2018) Cervical spine injuries in children associated with sports and recreational activities. Pediatr Emerg Care 34(10):677–686

    PubMed  Google Scholar 

  • Bellák T, Fekécs Z, Török D, Táncos Z, Nemes C, Tézsla Z, Gál L, Polgári S, Kobolák J, Dinnyés A, Nógrádi A (2020) Grafted human induced pluripotent stem cells improve the outcome of spinal cord injury: modulation of the lesion microenvironment. Sci Rep 10(1):1–9

    Article  Google Scholar 

  • Berthiaume F, Maguire TJ, Yarmush ML (2011) Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2:403–430

    Article  PubMed  Google Scholar 

  • Bregman BS, mcatee M, Dai HN, Kuhn PL. (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 148(2):475–494

    Article  CAS  PubMed  Google Scholar 

  • Burnstine-Townley A, Eshel Y, Amdursky N (2020) Conductive scaffolds for cardiac and neuronal tissue engineering: governing factors and mechanisms. Adv Funct Mater 30(18):1901369

    Article  CAS  Google Scholar 

  • Carratù MR (2017) Lazaroids and neuroprotection: what benefit? J Pharmacol Clin Res 2(2)

    Google Scholar 

  • Cerqueira SR, Lee YS, Cornelison RC, Mertz MW, Wachs RA, Schmidt CE, Bunge MB (2018) Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury. Biomaterials 177:176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceto S, Sekiguchi KJ, Takashima Y, Nimmerjahn A, Tuszynski MH (2020) Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell 27(3):430–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KH, Huang CY, Ou-Yang CH, Ho CH, Lin HY, Hsu CL, Chen YT, Chou YC, Chen YJ, Chen Y, Lin JL (2021) In vitro genome editing rescues parkinsonism phenotypes in induced pluripotent stem cells-derived dopaminergic neurons carrying LRRK2 p. G2019S mutation. Stem Cell Res Ther 12(1):1–8

    Article  Google Scholar 

  • Chen J, Zhang Z, Liu J, Zhou R, Zheng X, Chen T, Wang L, Huang M, Yang C, Li Z, Yang C (2014) Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats. J Neurosci Res 92(3):307–317

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Tang Y, Allen V, de Vivo MJ (2016) Fall-induced spinal cord injury: external causes and implications for prevention. J Spinal Cord Med 39(1):24–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Xu HH, Liu XY, Zhang YS, Zhong L, Wang YW, Xu L, Wei P, Chen YX, Liu P, Hao CR (2022a) 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats. Regenerative. Biomaterials

    Google Scholar 

  • Chen Z, Wang L, Chen C, Sun J, Luo J, Cui W, Zhu C, Zhou X, Liu X, Yang H, Shi Q (2022b) NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair. NPG Asia Materials 14(1):1–1

    Article  Google Scholar 

  • Chinnock P, Roberts I (2005) Gangliosides for acute spinal cord injury. Cochrane Database Syst Rev 2

    Google Scholar 

  • Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D (2019) Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci 20(11):2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, McLean JR, Carrillo-Reid L, Xie Z, Osborn T, Hargus G (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Trans Med 4(141):141ra90

    Article  Google Scholar 

  • Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Péault B (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21(8):1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Coutts M, Keirstead HS (2008) Stem cells for the treatment of spinal cord injury. Exp Neurol 209(2):368–377

    Article  CAS  PubMed  Google Scholar 

  • Cripps RA, Lee BB, Wing P, Weerts E, Mackay J, Brown D (2011) A global map for traumatic spinal cord injury epidemiology: towards a living data repository for injury prevention. Spinal Cord 49(4):493–501

    Article  CAS  PubMed  Google Scholar 

  • Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, Jamieson C (2018) A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 22(6):941–950

    Article  CAS  PubMed  Google Scholar 

  • D’Aiuto L, Zhi Y, Kumar Das D, Wilcox MR, Johnson JW, McClain L, MacDonald ML, Di Maio R, Schurdak ME, Piazza P, Viggiano L (2014) Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis 10(4):365–377

    Article  PubMed  Google Scholar 

  • David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, Freund P (2019) Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 15(12):718–731

    Article  PubMed  Google Scholar 

  • Delgadillo D III, Chapman S, Fahrenkopf MP (2017) Acute-onset quadriplegia with recovery after high-voltage electrical injury. Annal Plastic Surg 79(5):e33–e36

    Article  CAS  Google Scholar 

  • Deng J, Li M, Meng F, Liu Z, Wang S, Zhang Y, Li M, Li Z, Zhang L, Tang P (2021) 3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice. Cell Death Dis 12(12):1–5

    Article  Google Scholar 

  • DeVivo MJ (2012) Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 50(5):365–372

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Galindo MD, Calderón-Vallejo D, Olvera-Sandoval C, Quintanar JL (2020) Therapeutic approaches of trophic factors in animal models and in patients with spinal cord injury. Growth Factors 38(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Du XJ, Chen YX, Zheng ZC, Wang N, Wang XY, Kong FE (2019) Neural stem cell transplantation inhibits glial cell proliferation and P2X receptor-mediated neuropathic pain in spinal cord injury rats. Neural Regen Res 14(5):876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duh MS, Shepard MJ, Wilberger JE, Bracken MB (1994) The effectiveness of surgery on the treatment of acute spinal cord injury and its relation to pharmacological treatment. Neurosurgery 35(2):240–249

    Article  CAS  PubMed  Google Scholar 

  • Dumont CM, Munsell MK, Carlson MA, Cummings BJ, Anderson AJ, Shea LD (2018) Spinal progenitor-laden bridges support earlier axon regeneration following spinal cord injury. Tissue Eng Part A 24(21–22):1588–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont CM, Carlson MA, Munsell MK, Ciciriello AJ, Strnadova K, Park J, Cummings BJ, Anderson AJ, Shea LD (2019) Aligned hydrogel tubes guide regeneration following spinal cord injury. Acta Biomater 86:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert MJ, Martin MJ (2017) Trauma: spinal cord injury. Surg Clin 97(5):1031–1045

    Google Scholar 

  • El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V (2014) Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev 20(5):523–544

    Article  PubMed  Google Scholar 

  • Evaniew N, Mazlouman SJ, Belley-Côté EP, Jacobs WB, Kwon BK (2020) Interventions to optimize spinal cord perfusion in patients with acute traumatic spinal cord injuries: a systematic review. J Neurotrauma 37(9):1127–1139

    Article  PubMed  Google Scholar 

  • Fan J, Varshney RR, Ren L, Cai D, Wang DA (2009) Synovium-derived mesenchymal stem cells: A new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 15(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Finsterwald C, Dias S, Magistretti PJ, Lengacher S (2021) Ganglioside GM1 targets astrocytes to stimulate cerebral energy metabolism. Front Pharmacol 12:967

    Article  Google Scholar 

  • Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK et al (2011) Human Wharton’s Jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep 7(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Forgione N, Fehlings MG (2013) Novel insights into pathophysiology and emerging therapeutic opportunities. Future Medicine Ltd 22–44. https://doi.org/10.2217/ebo.12.150

  • Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(24):4195–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Xu Y (2012) Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med 4(6):1–0

    Article  Google Scholar 

  • Furlan JC, Sakakibara BM, Miller WC, Krassioukov AV (2013) Global incidence and prevalence of traumatic spinal cord injury. Can J Neurol Sci 40(4):456–464

    Article  PubMed  Google Scholar 

  • García E, Rodríguez-Barrera R, Buzoianu-Anguiano V, Flores-Romero A, Malagón-Axotla E, Guerrero-Godinez M, De la Cruz-Castillo E, Castillo-Carvajal L, Rivas-Gonzalez M, Santiago-Tovar P, Morales I (2019) Use of a combination strategy to improve neuroprotection and neuroregeneration in a rat model of acute spinal cord injury. Neural Regen Res 14(6):1060

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Gareta E, Abduldaiem Y, Sawadkar P, Kyriakidis C, Lali F, Greco KV (2020) Decellularised scaffolds: just a framework? Current knowledge and future directions. J Tissue Eng 11:2041731420942903

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrudo FF, Chapman CA, Hoffman PR, Udangawa RW, Silva JC, Mikael PE, Rodrigues CA, Cabral JM, Morgado JM, Ferreira FC, Linhardt RJ (2019 Aug) Polyaniline-polycaprolactone blended nanofibers for neural cell culture. Eur Polym J 1(117):28–37

    Article  Google Scholar 

  • Geisler FH, Dorsey FC, Coleman WP (1993) Past and current clinical studies with GM-1 ganglioside in acute spinal cord injury. Ann Emerg Med 22(6):1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Hu N, Liu J, Ding F, Gu XS (2010) Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia. Sci China Life Sci 53(9):1057–1064

    Article  PubMed  Google Scholar 

  • Gu X, Ding F, Yang Y, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 93(2):204–230

    Article  CAS  PubMed  Google Scholar 

  • Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT (2018) Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 185:284–300

    Article  CAS  PubMed  Google Scholar 

  • Guo SZ, Ren XJ, Wu B, Jiang T (2010) Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility. Spinal Cord 48(7):576–581

    Article  PubMed  Google Scholar 

  • Guo F, Zheng X, He Z, Zhang R, Zhang S, Wang M, Chen H, Wang W (2021) Nimodipine promotes functional recovery after spinal cord injury in rats. Front Pharmacol 2521

    Google Scholar 

  • Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LP, Hodgetts SI (2015) Neurotrophic factors for spinal cord repair: which, where, how and when to apply, and for what period of time? Brain Res 1619:36–71

    Article  CAS  PubMed  Google Scholar 

  • Hasanzadeh E, Ebrahimi-Barough S, Mirzaei E, Azami M, Tavangar SM, Mahmoodi N, Basiri A, Ai J (2019) Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. J Biomed Mater Res A 107(4):802–814

    Article  CAS  PubMed  Google Scholar 

  • Hejčl A, Růžička J, Proks V, Macková H, Kubinová Š, Tukmachev D, Cihlář J, Horák D, Jendelová P (2018) Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection. J Mater Sci Mater Med 29(7):1–2

    Article  Google Scholar 

  • Heo DN, Lee SJ, Timsina R, Qiu X, Castro NJ, Zhang LG (2019) Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering. Mater Sci Eng C 99:582–590

    Article  CAS  Google Scholar 

  • Hirose K, Okajima K, Taoka Y, Uchiba M, Tagami H, Nakano KY, Utoh J, Okabe H, Kitamura N (2000) Activated protein C reduces the ischemia/reperfusion-induced spinal cord injury in rats by inhibiting neutrophil activation. Ann Surg 232(2):272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosaka N, Arai K, Otsuka H, Kishimoto H (2020) Incidence of recreational snowboarding-related spinal injuries over an 11-year period at a ski resort in Niigata, Japan. BMJ Open Sport Exerc Med 6(1):e000742

    Article  PubMed  PubMed Central  Google Scholar 

  • Inglis GA, Zhou Y, Patterson DG, Scharer CD, Han Y, Boss JM, Wen Z, Escayg A (2020) Transcriptomic and epigenomic dynamics associated with development of human iPSC-derived GABAergic interneurons. Hum Mol Genet 29(15):2579–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasawa C, Kuzumaki N, Suda Y, Kagawa R, Oka Y, Hattori N, Okano H, Narita M (2019) Reduced expression of somatostatin in GABAergic interneurons derived from induced pluripotent stem cells of patients with parkin mutations. Mol Brain 12(1):1–8

    Article  Google Scholar 

  • January AM, Kirk S, Zebracki K, Chlan KM, Vogel LC (2018) Psychosocial and health outcomes of adults with violently acquired pediatric spinal cord injury. Topics in spinal cord injury rehabilitation 24(4):363–370

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen JM, Shi R (2003) Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction. J Neurophysiol 90(4):2334–2340

    Article  CAS  PubMed  Google Scholar 

  • Jeong HJ, Yun Y, Lee SJ, Ha Y, Gwak SJ (2021 Jan) Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int 23:104973

    Article  Google Scholar 

  • Jiang T, Ren XJ, Tang JL, Yin H, Wang KJ, Zhou CL (2013) Preparation and characterization of genipin-crosslinked rat acellular spinal cord scaffolds. Mater Sci Eng C 33(6):3514–3521

    Article  CAS  Google Scholar 

  • Jiang C, Li Z, Wu Z, Liang Y, Jin L, Cao Y, Wan S, Chen Z (2020) Integrated bioinformatics analysis of hub genes and pathways associated with a compression model of spinal cord injury in rats. Med Sci Monit 26:e927107–e927101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin MC, Medress ZA, Azad TD, Doulames VM, Veeravagu A (2019) Stem cell therapies for acute spinal cord injury in humans: a review. Neurosurg Focus 46(3):E10

    Article  PubMed  Google Scholar 

  • Jones LL, Oudega M, Bunge MB, Tuszynski MH (2001) Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol 533(1):83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi MB, Patil P, He Z, Holgersson J, Olausson M, Sumitran-Holgersson S (2012) Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes. Cytotherapy 14(6):657–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jure I, De Nicola AF, Labombarda F (2019) Progesterone effects on oligodendrocyte differentiation in injured spinal cord. Brain Res 1708:36–46

    Article  CAS  PubMed  Google Scholar 

  • Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strobl H, Takashima Y (2016) Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med 22(5):479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamata Y, Isoda M, Sanosaka T, Shibata R, Ito S, Okubo T, Shinozaki M, Inoue M, Koya I, Shibata S, Shindo T (2021) A robust culture system to generate neural progenitors with gliogenic competence from clinically relevant induced pluripotent stem cells for treatment of spinal cord injury. Stem Cells Transl Med 10(3):398–413

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Ding H, Zhou H, Wei Z, Liu L, Pan D, Feng S (2018) Epidemiology of worldwide spinal cord injury: a literature review. J Neurorestoratol 6(1):3

    Google Scholar 

  • Karsy M, Hawryluk G (2019) Modern medical management of spinal cord injury. Curr Neurol Neurosci Rep 19(9):1–7

    Article  CAS  Google Scholar 

  • Kawabata S, Takano M, Numasawa-Kuroiwa Y, Itakura G, Kobayashi Y, Nishiyama Y, Sugai K, Nishimura S, Iwai H, Isoda M, Shibata S (2016) Grafted human iPS cell-derived oligodendrocyte precursor cells contribute to robust remyelination of demyelinated axons after spinal cord injury. Stem Cell Rep 6(1):1–8

    Article  CAS  Google Scholar 

  • Kennedy P, Cox A, Mariani A (2013) Spinal cord injuries as a consequence of falls: are there differential rehabilitation outcomes? Spinal Cord 51(3):209–213

    Article  CAS  PubMed  Google Scholar 

  • Khan YS, Lui F (2020) Neuroanatomy, Spinal Cord Statpearls [Internet] 2020 Jun 3

    Google Scholar 

  • Kim C, Kim HJ, Lee H, Lee H, Lee SJ, Lee ST, Yang SR, Chung CK (2019) Mesenchymal stem cell transplantation promotes functional recovery through MMP2/STAT3 related astrogliosis after spinal cord injury. Int J Stem Cells 12(2):331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko HY (2019) Biomechanics and pathophysiology of spinal cord injuries. In: Management and rehabilitation of spinal cord injuries, pp 73–80

    Chapter  Google Scholar 

  • Ko CC, Tu TH, Wu JC, Huang WC, Cheng H (2019) Acidic fibroblast growth factor in spinal cord injury. Neurospine 16(4):728

    Article  PubMed  PubMed Central  Google Scholar 

  • Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, Graham L, Lu P, Sakamoto J, Marsala M, Chen S (2019) Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 25(2):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmenko V, Kalogeropoulos T, Thunberg J, Johannesson S, Hägg D, Enoksson P, Gatenholm P (2016) Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds. Mater Sci Eng C 58:14–23

    Article  CAS  Google Scholar 

  • Langer R (1993) VacantiJP: Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Park YJ, Song SY, Hwang SC, Kim KT, Kim DH (2018) The importance of early surgical decompression for acute traumatic spinal cord injury. Clin Orthop Surg 10(4):448–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Kim KT, Kwon BK (2021) Hemodynamic management of acute spinal cord injury: a literature review. Neurospine 18(1):7

    Article  PubMed  Google Scholar 

  • Leisz S, Simmermacher S, Prell J, Strauss C, Scheller C (2019) Nimodipine-dependent protection of schwann cells, astrocytes and neuronal cells from osmotic, oxidative and heat stress is associated with the activation of AKT and CREB. Int J Mol Sci 20(18):4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong C, Zhai D, Kim B, Yun SW, Chang YT (2013) Neural stem cell isolation from the whole mouse brain using the novel FABP7-binding fluorescent dye, CDr3. Stem Cell Res 11(3):1314–1322

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ona VO, Chen M, Kaul M, Tenneti L, Zhang X, Stieg PE, Lipton SA, Friedlander RM (2000) Functional role and therapeutic implications of neuronal caspase-1 and-3 in a mouse model of traumatic spinal cord injury. Neuroscience 99(2):333–342

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Gao S, Kang Z, Zhang M, Zhao X, Zhai Y, Huang J, Yang GY, Sun W, Wang J (2018a) Rapamycin enhances mitophagy and attenuates apoptosis after spinal ischemia-reperfusion injury. Front Neurosci 12:865

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Sun J, Zhuang Y, Wu X, Shi J, Chen Y, Dai J (2018b) A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair. Biomaterials 183:114–127

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang C, Haggerty AE, Yan J, Lan M, Seu M, Yang M, Marlow MM, Maldonado-Lasunción I, Cho B, Zhou Z (2020) The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials 245:119978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li NY, Onor GI, Lemme NJ, Gil JA (2021) Epidemiology of peripheral nerve injuries in sports, exercise, and recreation in the United States, 2009–2018. Phys Sportsmed 49(3):355–362

    Article  PubMed  Google Scholar 

  • Lien BV, Tuszynski MH, Lu P (2019) Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord. Exp Neurol 314:46–57

    Article  CAS  PubMed  Google Scholar 

  • Lin HY, Chang YY, Kao MC, Huang CJ (2017) Naloxone inhibits nod-like receptor protein 3 inflammasome. J Surg Res 219:72–77

    Article  CAS  PubMed  Google Scholar 

  • Liu LL, Li Q (2018) Promotion of neuronal regeneration by using self-polymerized dendritic polypeptide scaffold for spinal cord tissue engineering. J Mater Sci Mater Med 29(1):1–7

    Google Scholar 

  • Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L, Liu B (2015) Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS One 10(3):e0117709

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Li Y, Choi HM, Sarkar C, Koh EY, Wu J, Lipinski MM (2018) Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death Dis 9(5):1–4

    Article  Google Scholar 

  • Lu P, Woodruff G, Wang Y, Graham L, Hunt M, Wu D, Boehle E, Ahmad R, Poplawski G, Brock J, Goldstein LS (2014) Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83(4):789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig PE, Patil AA, Chamczuk AJ, Agrawal DK (2017) Hormonal therapy in traumatic spinal cord injury. Am J Transl Res 9(9):3881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch J, Cahalan R (2017) The impact of spinal cord injury on the quality of life of primary family caregivers: a literature review. Spinal Cord 55(11):964–978

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Otsuka T, Takeda M, Okazaki T, Shimizu K, Kuwabara M, Hosogai M, Yuge L, Mitsuhara T (2021) Transplantation of rat cranial bone-derived mesenchymal stem cells promotes functional recovery in rats with spinal cord injury. Sci Rep 11(1):1–1

    Article  Google Scholar 

  • Mahajani S, Raina A, Fokken C, Kügler S, Bähr M (2019) Homogenous generation of dopaminergic neurons from multiple hiPSC lines by transient expression of transcription factors. Cell Death Dis 10(12):1–5

    Article  Google Scholar 

  • Manzari-Tavakoli A, Tarasi R, Sedghi R, Moghimi A, Niknejad H (2020) Fabrication of nanochitosan incorporated polypyrrole/alginate conducting scaffold for neural tissue engineering. Sci Rep 10(1):1–0

    Article  Google Scholar 

  • Martín-López M, González-Muñoz E, Gómez-González E, Sánchez-Pernaute R, Márquez-Rivas J, Fernández-Muñoz B (2021) Modeling chronic cervical spinal cord injury in aged rats for cell therapy studies. J Clin Neurosci 94:76–85

    Article  PubMed  Google Scholar 

  • Medina O, Singla V, Liu C, Fukunaga D, Rolfe K (2020) Patterns of spinal cord injury in automobiles versus motorcycles and bicycles. Spinal Cord Ser Cases 6(1):1–4

    Article  Google Scholar 

  • Meshkini A, Salehpour F, Aghazadeh J, Mirzaei F, Alavi SA (2018) Riluzole can improve sensory and motor function in patients with acute spinal cord injury. Asian J Neurosurg 13(3):656

    Article  PubMed  PubMed Central  Google Scholar 

  • Moriwaki K, Luz NF, Balaji S, De Rosa MJ, O’Donnell CL, Gough PJ, Bertin J, Welsh RM, Chan FK (2016) The mitochondrial phosphatase PGAM5 is dispensable for necroptosis but promotes inflammasome activation in macrophages. J Immunol 196(1):407–415

    Article  CAS  PubMed  Google Scholar 

  • Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, Hayashi T, Onoe H, Shiina T, Yamanaka S, Takahashi J (2013) Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a nonhuman primate. Stem Cell Rep 1(4):283–292

    Article  CAS  Google Scholar 

  • Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA (2019) Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res 14(2):227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muniswami DM, Tharion G (2018) Functional recovery following the transplantation of olfactory ensheathing cells in rat spinal cord injury model. Asian Spine J 12(6):998

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutlu L, Hufnagel D, Taylor HS (2015) The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biol Reprod 92(6)

    Google Scholar 

  • Nakamura M, Houghtling RA, Macarthur L, Bayer BM, Bregman BS (2003) Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp Neurol 184(1):313–325

    Article  CAS  PubMed  Google Scholar 

  • Nakhjavan-Shahraki B, Yousefifard M, Rahimi-Movaghar V, Baikpour M, Nasirinezhad F, Safari S, Yaseri M, Moghadas Jafari A, Ghelichkhani P, Tafakhori A, Hosseini M (2018) Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and meta-analysis. Sci Rep 8(1):1–2

    Article  CAS  Google Scholar 

  • Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schüle B, Dolmetsch RE, Langston W, Palmer TD (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8(3):267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble M, Tseng KC, Li H, Elfar JC (2019) 4-Aminopyridine as a single agent diagnostic and treatment for severe nerve crush injury. Mil Med 184(Supp 1):379–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Nutt SE, Chang EA, Suhr ST, Schlosser LO, Mondello SE, Moritz CT, Cibelli JB, Horner PJ (2013) Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Exp Neurol 248:491–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SH, Lee HY, Ki YJ, Kim SH, Lim KJ, Jung KT (2020) Gabexate mesilate ameliorates the neuropathic pain in a rat model by inhibition of proinflammatory cytokines and nitric oxide pathway via suppression of nuclear factor-κb. Korean J Pain 33(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  • Orr MB, Gensel JC (2018) Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15(3):541–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patki S, Kadam S, Chandra V, Bhonde R (2010) Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell 23(2):35–40

    Article  CAS  PubMed  Google Scholar 

  • Pourrajab F, Forouzannia SK, Tabatabaee SA (2013) Molecular characteristics of bone marrow mesenchymal stem cells, source of regenerative medicine. Int J Cardiol 163(2):125–131

    Article  PubMed  Google Scholar 

  • Ramakonar H, Fehlings MG (2021) ‘Time is Spine’: new evidence supports decompression within 24 h for acute spinal cord injury. Spinal Cord 59(8):933–934

    Article  PubMed  PubMed Central  Google Scholar 

  • Reis KP, Sperling LE, Teixeira C, Paim Á, Alcântara B, Vizcay-Barrena G, Fleck RA, Pranke P (2018) Application of PLGA/FGF-2 coaxial microfibers in spinal cord tissue engineering: an in vitro and in vivo investigation. Regen Med 13(7):785–801

    Article  CAS  PubMed  Google Scholar 

  • Reuss B, Halbach OV (2003) Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 313(2):139–157

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, Weber JL, Liang JJ, Moseanko R, Hawbecker S, Huie JR (2018) Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 24(4):484–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouanet C, Reges D, Rocha E, Gagliardi V, Silva GS (2017) Traumatic spinal cord injury: current concepts and treatment update. Arq Neuropsiquiatr 75:387–393

    Article  PubMed  Google Scholar 

  • Rowland JW, Hawryluk GW, Kwon B, Fehlings MG (2008) Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 25(5):E2

    Article  PubMed  Google Scholar 

  • Sadat-Ali M, Al-Dakheel DA, Ahmed A, Al-Turki HA, Al-Omran AS, Acharya S, Al-Bayat MI (2020) Spinal cord injury regeneration using autologous bone marrow-derived neurocytes and rat embryonic stem cells: a comparative study in rats. World J Stem Cells 12(12):1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadik ME, Ozturk AK, Albayar A, Branche M, Sullivan PZ, Schlosser LO, Browne KD, Jaye AH, Smith DH (2020) A strategy toward bridging a complete spinal cord lesion using stretch-grown axons. Tissue Eng Part A 26(11–12):623–635

    Article  CAS  PubMed  Google Scholar 

  • Salewski RP, Mitchell RA, Shen C, Fehlings MG (2015) Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury. Stem Cells Dev 24(1):36–50

    Article  CAS  PubMed  Google Scholar 

  • Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, Latter J, Ornelas L, Garcia L, Svendsen CN (2014) Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol 522(12):2707–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shank CD, Walters BC, Hadley MN (2019) Current topics in the management of acute traumatic spinal cord injury. Neurocrit Care 30(2):261–271

    Article  PubMed  Google Scholar 

  • Shende P, Subedi M (2017) Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomed Pharmacother 91:693–706

    Article  CAS  PubMed  Google Scholar 

  • Shih RH, Wang CY, Yang CM (2015) NF-kappab signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin HJ, Na HS, Do SH (2020) Magnesium and pain. Nutrients 12(8):2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shroff G, Gupta R (2015) Human embryonic stem cells in the treatment of patients with spinal cord injury. Ann Neurosci 22(4):208

    Article  PubMed  PubMed Central  Google Scholar 

  • Shultz RB, Zhong Y (2017) Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 12(5):702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva NA, Salgado AJ, Sousa RA, Oliveira JT, Pedro AJ, Leite-Almeida H, Cerqueira R, Almeida A, Mastronardi F, Mano JF, Neves NM (2010) Development and characterization of a novel hybrid tissue engineering–based scaffold for spinal cord injury repair. Tissue Eng Part A 16(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Silveira MA, Palitot TF, Cavalcanti AL, de Souza AG, Fernandes LH, da Cruz PC, Batista GP, da Silva Nascimento PM, Tavares EC, da Silva MM (2020) Epidemiologic Aspects of Spinal Cord Trauma Cases among Traffic Accident Victims. Int Arch Med 12:13

    Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 6:309

    PubMed  PubMed Central  Google Scholar 

  • Singh VK, Kumar N, Kalsan M, Saini A, Chandra R (2015) Mechanism of induction: induced pluripotent stem cells (iPSCs). J Stem Cells 10(1):43

    CAS  PubMed  Google Scholar 

  • Singh A, Shiekh PA, Das M, Seppälä J, Kumar A (2018) Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: fabrication, characterization, and in vitro evaluation. Biomacromolecules 20(2):662–673

    Article  PubMed  Google Scholar 

  • Solaroglu I, Jadhav V, Zhang JH (2007) Neuroprotective effect of granulocyte-colony stimulating factor. Front Biosci 12(712):e24

    Google Scholar 

  • Spearman BS, Agrawal NK, Rubiano A, Simmons CS, Mobini S, Schmidt CE (2020) Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications. J Biomed Mater Res A 108(2):279–291

    Article  CAS  PubMed  Google Scholar 

  • Srinivas S, Wali AR, Pham MH (2019) Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature. Neurosurg Focus 46(3):E6

    Article  PubMed  Google Scholar 

  • Srivastava RN, Singh A, Garg RK, Agarwal A, Raj S (2015) Epidemiology of traumatic spinal cord injury: a SAARC perspective. Int J Mol Biol Biochem 3:9–22

    Google Scholar 

  • Tang Z, Shao X, Wu J, Chen H, Zhang A, Xu F, Ping H, Li S, Liu C, Li Y, Xue X (2021) Naloxone Protects against Lipopolysaccharide-Induced Neuroinflammation and Microglial Activation via Inhibiting ATP-Sensitive Potassium Channel. Comput Math Methods Med 29:2021

    Google Scholar 

  • Taoka Y, Schlag MG, Hopf R, Redl H (2000) The long-term effects of pre-treatment with activated protein C in a rat model of compression-induced spinal cord injury. Spinal Cord 38(12):754–761

    Article  CAS  PubMed  Google Scholar 

  • Ter Wengel PV, de Witt Hamer PC, Pauptit JC, van der Gaag NA, Oner FC, Vandertop WP (2019) Early surgical decompression improves neurological outcome after complete traumatic cervical spinal cord injury: a meta-analysis. J Neurotrauma 36(6):835–844

    Article  PubMed  Google Scholar 

  • Thinyane K, Baier PC, Schindehütte J, Mansouri A, Paulus W, Trenkwalder C, Flügge G, Fuchs E (2005) Fate of pre-differentiated mouse embryonic stem cells transplanted in unilaterally 6-hydroxydopamine lesioned rats: histological characterization of the grafted cells. Brain Res 1045(1–2):80–87

    Article  CAS  PubMed  Google Scholar 

  • Tian T, Yu Z, Zhang N, Chang Y, Zhang Y, Zhang L, Zhou S, Zhang C, Feng G, Huang F (2017) Modified acellular nerve-delivering PMSCs improve functional recovery in rats after complete spinal cord transection. Biomater Sci 5(12):2480–2492

    Article  CAS  PubMed  Google Scholar 

  • Tolosa E, Botta-Orfila T, Morató X, Calatayud C, Ferrer-Lorente R, Martí MJ, Fernández M, Gaig C, Raya Á, Consiglio A, Ezquerra M (2018) MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol Aging 69:283–291

    Article  CAS  PubMed  Google Scholar 

  • Tran AP, Warren PM, Silver J (2018) The biology of regeneration failure and success after spinal cord injury. Physiol Rev 98(2):881–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulndreaj A, Chio JC, Ahuja CS, Fehlings MG (2016) Modulating the immune response in spinal cord injury. Expert Rev Neurother 16(10):1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Vaquero J, Zurita M, Rico MA, Aguayo C, Bonilla C, Marin E, Tapiador N, Sevilla M, Vazquez D, Carballido J, Fernandez C (2018) Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy 20(6):806–819

    Article  PubMed  Google Scholar 

  • Wang H, Liu X, Zhao Y, Ou L, Zhou Y, Li C, Liu J, Chen Y, Yu H, Wang Q, Han J (2016) Incidence and pattern of traumatic spinal fractures and associated spinal cord injury resulting from motor vehicle collisions in China over 11 years: an observational study. Medicine 95(43)

    Google Scholar 

  • Wang YH, Chen J, Zhou J, Nong F, Lv JH, Liu J (2017) Reduced inflammatory cell recruitment and tissue damage in spinal cord injury by acellular spinal cord scaffold seeded with mesenchymal stem cells. Exp Ther Med 13(1):203–207

    Article  CAS  PubMed  Google Scholar 

  • Watane GV, Gosangi B, Thomas R, Gujrathi R, Park H, Harris MB, Khurana B (2021) Incidence and characteristics of spinal injuries in the victims of intimate partner violence (IPV). Emerg Radiol 28(2):283–289

    Article  PubMed  Google Scholar 

  • Wiseman TM, Baron-Heeris D, Houwers IG, Keenan R, Williams RJ, Nisbet DR, Harvey AR, Hodgetts SI (2021) Peptide hydrogel scaffold for mesenchymal precursor cells implanted to injured adult rat spinal cord. Tissue Eng Part A 27(15–16):993–1007

    Article  CAS  PubMed  Google Scholar 

  • Wright AA, Todorovic M, Tello-Velasquez J, Rayfield AJ, St John JA, Ekberg JA (2018) Enhancing the therapeutic potential of olfactory ensheathing cells in spinal cord repair using neurotrophins. Cell Transplant 27(6):867–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Hoogduijn MJ, Baan CC, Korevaar SS, Kuiper RD, Yan L, Wang L, Besouw NM (2017) Adipose tissue-derived mesenchymal stem cells have a heterogenic cytokine secretion profile. Stem Cells Int

    Google Scholar 

  • Wu GH, Shi HJ, Che MT, Huang MY, Wei QS, Feng B, Ma YH, Wang LJ, Jiang B, Wang YQ, Han I (2018) Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue. Biomaterials 181:15–34

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Xue LD, Su LW, Xie JL, Jiang H, Yu XJ, Liu HM (2019) Magnesium promotes the viability and induces differentiation of neural stem cells both in vitro and in vivo. Neurol Res 41(3):208–215

    Article  PubMed  Google Scholar 

  • Wu J, Shamah S, Tsui E, Rizvi A, Esses E, Lugo C, Sadowsky D, Bass D, Rashid T, Myers RA, Gerard P (2020) Trauma on the high seas: an overview of recreational water use injuries. Emerg Radiol 27(4):423–423

    Article  PubMed  Google Scholar 

  • Xiao Z, Tang F, Zhao Y, Han G, Yin N, Li X, Chen B, Han S, Jiang X, Yun C, Zhao C (2018) Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with neuroregen scaffolds and mesenchymal stem cells. Cell Transplant 27(6):907–915

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing H, Yin H, Sun C, Ren X, Tian Y, Yu M, Jiang T (2019) Preparation of an acellular spinal cord scaffold to improve its biological properties. Mol Med Rep 20(2):1075–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wong CW, Hsu SH (2020) An injectable, electroconductive hydrogel/scaffold for neural repair and motion sensing. Chem Mater 32(24):10407–10422

    Article  CAS  Google Scholar 

  • Yang EZ, Zhang GW, Xu JG, Chen S, Wang H, Cao LL, Liang B, Lian XF (2017) Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Acta Pharmacol Sin 38(5):623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao ZA, Chen FJ, Cui HL, Lin T, Guo N, Wu HG (2018a) Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats. Neural Regen Res 13(3):502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao S, Yu S, Cao Z, Yang Y, Yu X, Mao HQ, Wang LN, Sun X, Zhao L, Wang X (2018b) Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. Int J Nanomedicine 13:2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Jiang T, Deng X, Yu M, Xing H, Ren X (2018) A cellular spinal cord scaffold seeded with rat adipose derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats. Mol Med Rep 17(2):2998–3004

    CAS  PubMed  Google Scholar 

  • Zeb A, Arsh A, Bahadur S, Ilyas SM (2019) Spinal cord injury due to fall from electricity poles after electrocution. Pak J Med Sci 35(4):1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai H, Zhou J, Xu J, Sun X, Xu Y, Qiu X, Zhang C, Wu Z, Long H, Bai Y, Quan D (2020) Mechanically strengthened hybrid peptide-polyester hydrogel and potential applications in spinal cord injury repair. Biomed Mater 15(5):055031

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhuang X, Chen Y, Xia H (2019a) Intravenous transplantation of olfactory bulb ensheathing cells for a spinal cord hemisection injury rat model. Cell Transplant 28(12):1585–1602

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang Z, Wang Y, Li L, Wu Z, Ito Y, Yang X, Zhang P (2019b) A novel approach via surface modification of degradable polymers with adhesive DOPA-IGF-1 for neural tissue engineering. J Pharm Sci 108(1):551–562

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhuang X, Kotitalo P, Keller T, Krzyczmonik A, Haaparanta-Solin M, Solin O, Forsback S, Grönroos TJ, Han C, López-Picón FR (2021) Intravenous transplantation of olfactory ensheathing cells reduces neuroinflammation after spinal cord injury via interleukin-1 receptor antagonist. Theranostics 11(3):1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YH, Niu CM, Shi JQ, Wang YY, Yang YM, Wang HB (2018) Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen Res 13(8):1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhirkova EA, Spiridonova TG, Sachkov AV, Svetlov KV (2020) Electrical Injury (a literature review). Russian Sklifosovsky J Emerg Med Care 8(4):443–450

    Article  Google Scholar 

  • Zhou L, Fan L, Yi X, Zhou Z, Liu C, Fu R, Dai C, Wang Z, Chen X, Yu P, Chen D (2018a) Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano 12(11):10957–10967

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Shi G, Fan B, Cheng X, Zhang X, Wang X, Liu S, Hao Y, Wei Z, Wang L, Feng S (2018b) Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. Int J Nanomedicine 13:6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghnad G. Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhari, L.R., Kawale, A.A., Desai, S.S., Kashte, S.B., Joshi, M.G. (2022). Pathophysiology of Spinal Cord Injury and Tissue Engineering Approach for Its Neuronal Regeneration: Current Status and Future Prospects. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 18. Advances in Experimental Medicine and Biology(), vol 1409. Springer, Cham. https://doi.org/10.1007/5584_2022_731

Download citation

Publish with us

Policies and ethics