Skip to main content

Advertisement

Log in

Modern Medical Management of Spinal Cord Injury

  • Neurotrauma (D. Sandsmark, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Spinal cord injury (SCI) shows an incidence of 10.4–83 cases/million/year globally and remains a significant source of morbidity and cost to society. Despite greater understanding of the pathophysiology of SCI, neuroprotective and regenerative approaches to treatment have had limited clinical utility to date. Here, we review the key components of supportive care that are thus the mainstay of therapy and that have improved outcomes for victims of acute SCI in recent decades.

Recent Studies

Current management strategies for acute SCI involve early surgical decompression and fixation, the use of vasopressor medications for mean arterial blood pressure (MAP) augmentation to improve spinal cord perfusion, and corticosteroids. We highlight recent literature supporting the role of norepinephrine in acute SCI management and also an emerging neurocritical care strategy that seeks to optimize spinal cord perfusion pressure with the assistance of invasive monitoring.

Summary

This review will highlight key pathophysiologic principles and targets for current acute clinical treatments in SCI, which include early surgical decompression, MAP augmentation, and corticosteroids. We discuss anticipated future research in these areas and focus on potential risks inherent to these treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hawryluk GFM. Current status and future direction of management of spinal cord injury. In: Winn RH, editor. Youman's Neurological Surgery. 6th ed. Philadelphia: Elsevier; 2006. p. p. 2730–40.

    Chapter  Google Scholar 

  2. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44(9):523–9. https://doi.org/10.1038/sj.sc.3101893.

    Article  CAS  PubMed  Google Scholar 

  3. National Spinal Cord Injury Statistical Center. National spinal cord injury statistical center. Birmingham, AL: Facts and Figures at a Glance. University of Alabama at Birmingham; 2016. https://www.nscisc.uab.edu/. Accessed May 1, 2019

    Google Scholar 

  4. • Fehlings MG, Tetreault LA, Wilson JR, Kwon BK, Burns AS, Martin AR, et al. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope. Global Spine J. 2017;7(3 Suppl):84S–94S. https://doi.org/10.1177/2192568217703387 New guidelines from the AOSpine on the management of spinal cord injury.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hadley MN, Walters BC. Introduction to the guidelines for the management of acute cervical spine and spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):5–16. https://doi.org/10.1227/NEU.0b013e3182773549.

    Article  PubMed  Google Scholar 

  6. • Badhiwala JH, Ahuja CS, Fehlings MG. Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine. 2018;30(1):1–18. https://doi.org/10.3171/2018.9.SPINE18682 A comprehensive review of early surgical decompression and current clinical trials involving spinal cord injury.

    Article  PubMed  Google Scholar 

  7. Hadley MN, Walters BC, Grabb PA, Oyesiku NM, Przybylski GJ, Resnick DK, et al. Guidelines for the management of acute cervical spine and spinal cord injuries. Clin Neurosurg. 2002;49:407–98.

    PubMed  Google Scholar 

  8. Hurlbert RJ, Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery. 2015;76(Suppl 1):S71–83. https://doi.org/10.1227/01.neu.0000462080.04196.f7.

    Article  PubMed  Google Scholar 

  9. Walters BC, Hadley MN, Hurlbert RJ, Aarabi B, Dhall SS, Gelb DE, et al. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery. 2013;60(CN_suppl_1):82–91. https://doi.org/10.1227/01.neu.0000430319.32247.7f.

    Article  PubMed  Google Scholar 

  10. Consortium for Spinal Cord Medicine. Early acute management in adults with spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med. 2008;31(4):403–79. https://doi.org/10.1043/1079-0268-31.4.408.

    Article  Google Scholar 

  11. Fehlings MG, Wilson JR, Tetreault LA, Aarabi B, Anderson P, Arnold PM, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the use of methylprednisolone sodium succinate. Global Spine J. 2017;7(3 Suppl):203S–11S. https://doi.org/10.1177/2192568217703085.

    Article  PubMed  PubMed Central  Google Scholar 

  12. O'Toole JE, Kaiser MG, Anderson PA, Arnold PM, Chi JH, Dailey AT, et al. Congress of Neurological Surgeons systematic review and evidence-based guidelines on the evaluation and treatment of patients with thoracolumbar spine trauma: executive summary. Neurosurgery. 2019;84(1):2–6. https://doi.org/10.1093/neuros/nyy394.

    Article  PubMed  Google Scholar 

  13. Allen A. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA. 1911;11(LVII):878–80.

    Article  Google Scholar 

  14. Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg. 1997;86(3):483–92. https://doi.org/10.3171/jns.1997.86.3.0483.

    Article  CAS  PubMed  Google Scholar 

  15. Popovich PG. Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Prog Brain Res. 2000;128:43–58. https://doi.org/10.1016/S0079-6123(00)28006-0.

    Article  CAS  PubMed  Google Scholar 

  16. Juurlink BH, Paterson PG. Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med. 1998;21(4):309–34.

    Article  CAS  Google Scholar 

  17. Beattie MS, Farooqui AA, Bresnahan JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma. 2000;17(10):915–25. https://doi.org/10.1089/neu.2000.17.915.

    Article  CAS  PubMed  Google Scholar 

  18. Karsy M, Hawryluk G. Pharmacologic management of acute spinal cord injury. Neurosurg Clin N Am. 2017;28(1):49–62. https://doi.org/10.1016/j.nec.2016.07.002.

    Article  PubMed  Google Scholar 

  19. Jug M, Kejzar N, Vesel M, Al Mawed S, Dobravec M, Herman S, et al. Neurological recovery after traumatic cervical spinal cord injury is superior if surgical decompression and instrumented fusion are performed within 8 hours versus 8 to 24 hours after injury: a single center experience. J Neurotrauma. 2015;32(18):1385–92. https://doi.org/10.1089/neu.2014.3767.

    Article  PubMed  Google Scholar 

  20. Wilson JR, Singh A, Craven C, Verrier MC, Drew B, Ahn H, et al. Early versus late surgery for traumatic spinal cord injury: the results of a prospective Canadian cohort study. Spinal Cord. 2012;50(11):840–3. https://doi.org/10.1038/sc.2012.59.

    Article  CAS  PubMed  Google Scholar 

  21. van Middendorp JJ, Hosman AJ, Doi SA. The effects of the timing of spinal surgery after traumatic spinal cord injury: a systematic review and meta-analysis. J Neurotrauma. 2013;30(21):1781–94. https://doi.org/10.1089/neu.2013.2932.

    Article  PubMed  Google Scholar 

  22. Fehlings MG, Vaccaro A, Wilson JR, Singh A, D WC, Harrop JS, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One. 2012;7(2):e32037. https://doi.org/10.1371/journal.pone.0032037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghajarzadeh M, Saberi H. Transportation mode and timing of spinal cord decompression and stabilization in patients with traumatic spinal cord injury in Iran. Spinal Cord. 2019;57(2):150–5. https://doi.org/10.1038/s41393-018-0189-5.

    Article  PubMed  Google Scholar 

  24. Wutte C, Klein B, Becker J, Mach O, Panzer S, Strowitzki M, et al. Earlier decompression (< 8 hours) results in better neurological and functional outcome after traumatic thoracolumbar spinal cord injury. J Neurotrauma. 2019;36:2020–7. https://doi.org/10.1089/neu.2018.6146.

    Article  PubMed  Google Scholar 

  25. • Holland CM, Mazur MD, Bisson EF, Schmidt MH, Dailey AT. Trends in patient care for traumatic spinal injuries in the United States: a national inpatient sample study of the correlations with patient outcomes from 2001 to 2012. Spine (Phila Pa 1976). 2017;42(24):1923–9. https://doi.org/10.1097/BRS.0000000000002246 Novel evaluation of assessing the impact of patient transfer after spinal cord injury or vertebral fracture on outcomes.

    Article  Google Scholar 

  26. Thompson C, Feldman DE, Mac-Thiong JM. Surgical management of patients following traumatic spinal cord injury: identifying barriers to early surgery in a specialized spinal cord injury center. J Spinal Cord Med. 2018;41(2):142–8. https://doi.org/10.1080/10790268.2016.1165448.

    Article  PubMed  Google Scholar 

  27. Burke JF, Yue JK, Ngwenya LB, Winkler EA, Talbott JF, Pan JZ, et al. Ultra-early (<12 hours) surgery correlates with higher rate of American spinal injury association impairment scale conversion after cervical spinal cord injury. Neurosurgery. 2018. https://doi.org/10.1093/neuros/nyy537.

    Article  Google Scholar 

  28. Talbott JF, Huie JR, Ferguson AR, Bresnahan JC, Beattie MS, Dhall SS. MR imaging for assessing injury severity and prognosis in acute traumatic spinal cord injury. Radiol Clin N Am. 2019;57(2):319–39. https://doi.org/10.1016/j.rcl.2018.09.004.

    Article  PubMed  Google Scholar 

  29. Vale FL, Burns J, Jackson AB, Hadley MN. Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg. 1997;87(2):239–46. https://doi.org/10.3171/jns.1997.87.2.0239.

    Article  CAS  PubMed  Google Scholar 

  30. Levi L, Wolf A, Belzberg H. Hemodynamic parameters in patients with acute cervical cord trauma: description, intervention, and prediction of outcome. Neurosurgery. 1993;33(6):1007–16 discussion 16-7.

    CAS  PubMed  Google Scholar 

  31. Ryken TC, Hurlbert RJ, Hadley MN, Aarabi B, Dhall SS, Gelb DE, et al. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):84–92. https://doi.org/10.1227/NEU.0b013e318276ee16.

    Article  PubMed  Google Scholar 

  32. Martirosyan NL, Kalani MY, Bichard WD, Baaj AA, Gonzalez LF, Preul MC, et al. Cerebrospinal fluid drainage and induced hypertension improve spinal cord perfusion after acute spinal cord injury in pigs. Neurosurgery. 2015;76(4):461–8; discussion 8-9. https://doi.org/10.1227/NEU.0000000000000638.

    Article  PubMed  Google Scholar 

  33. Streijger F, So K, Manouchehri N, Tigchelaar S, Lee JHT, Okon EB, et al. Changes in pressure, hemodynamics, and metabolism within the spinal cord during the first 7 days after injury using a porcine model. J Neurotrauma. 2017;34(24):3336–50. https://doi.org/10.1089/neu.2017.5034.

    Article  PubMed  Google Scholar 

  34. Streijger F, So K, Manouchehri N, Gheorghe A, Okon EB, Chan RM, et al. A direct comparison between norepinephrine and phenylephrine for augmenting spinal cord perfusion in a porcine model of spinal cord injury. J Neurotrauma. 2018;35(12):1345–57. https://doi.org/10.1089/neu.2017.5285.

    Article  PubMed  Google Scholar 

  35. Hawryluk G, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, et al. Mean arterial blood pressure correlates with neurological recovery after human spinal cord injury: analysis of high frequency physiologic data. J Neurotrauma. 2015;32(24):1958–67. https://doi.org/10.1089/neu.2014.3778.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Catapano JS, John Hawryluk GW, Whetstone W, Saigal R, Ferguson A, Talbott J, et al. Higher mean arterial pressure values correlate with neurologic improvement in patients with initially complete spinal cord injuries. World Neurosurg. 2016;96:72–9. https://doi.org/10.1016/j.wneu.2016.08.053.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saadeh YS, Smith BW, Joseph JR, Jaffer SY, Buckingham MJ, Oppenlander ME, et al. The impact of blood pressure management after spinal cord injury: a systematic review of the literature. Neurosurg Focus. 2017;43(5):E20. https://doi.org/10.3171/2017.8.FOCUS17428.

    Article  PubMed  Google Scholar 

  38. Inoue T, Manley GT, Patel N, Whetstone WD. Medical and surgical management after spinal cord injury: vasopressor usage, early surgerys, and complications. J Neurotrauma. 2014;31(3):284–91. https://doi.org/10.1089/neu.2013.3061.

    Article  PubMed  Google Scholar 

  39. Readdy WJ, Whetstone WD, Ferguson AR, Talbott JF, Inoue T, Saigal R, et al. Complications and outcomes of vasopressor usage in acute traumatic central cord syndrome. J Neurosurg Spine. 2015;23(5):574–80. https://doi.org/10.3171/2015.2.SPINE14746.

    Article  PubMed  Google Scholar 

  40. Altaf F, Griesdale DE, Belanger L, Ritchie L, Markez J, Ailon T, et al. The differential effects of norepinephrine and dopamine on cerebrospinal fluid pressure and spinal cord perfusion pressure after acute human spinal cord injury. Spinal Cord. 2017;55(1):33–8. https://doi.org/10.1038/sc.2016.79.

    Article  CAS  PubMed  Google Scholar 

  41. Yue JK, Tsolinas R, Burke JF, Deng H, Upadhyayula PS, Robinson CK, et al. Vasopressor support in managing acute spinal cord injury: a knowledge update. J Neurosurg Sci. 2017. https://doi.org/10.23736/S0390-5616.17.04003-6.

  42. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study. N Engl J Med. 1990;322(20):1405–11. https://doi.org/10.1056/NEJM199005173222001.

    Article  CAS  PubMed  Google Scholar 

  43. Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF, et al. Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg. 1985;63(5):704–13. https://doi.org/10.3171/jns.1985.63.5.0704.

    Article  CAS  PubMed  Google Scholar 

  44. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA. 1997;277(20):1597–604.

    Article  CAS  Google Scholar 

  45. Jones CF, Newell RS, Lee JH, Cripton PA, Kwon BK. The pressure distribution of cerebrospinal fluid responds to residual compression and decompression in an animal model of acute spinal cord injury. Spine (Phila Pa 1976). 2012;37(23):E1422–31. https://doi.org/10.1097/BRS.0b013e31826ba7cd.

    Article  Google Scholar 

  46. Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain. 2008;131(Pt 4):1087–98. https://doi.org/10.1093/brain/awn014.

    Article  PubMed  Google Scholar 

  47. Oshio K, Binder DK, Yang B, Schecter S, Verkman AS, Manley GT. Expression of aquaporin water channels in mouse spinal cord. Neuroscience. 2004;127(3):685–93. https://doi.org/10.1016/j.neuroscience.2004.03.016.

    Article  CAS  PubMed  Google Scholar 

  48. Squair JW, Belanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Parent S, et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology. 2017;89(16):1660–7. https://doi.org/10.1212/WNL.0000000000004519.

    Article  PubMed  Google Scholar 

  49. Grassner L, Winkler PA, Strowitzki M, Buhren V, Maier D, Bierschneider M. Increased intrathecal pressure after traumatic spinal cord injury: an illustrative case presentation and a review of the literature. Eur Spine J. 2017;26(1):20–5. https://doi.org/10.1007/s00586-016-4769-9.

    Article  PubMed  Google Scholar 

  50. Kwon BK, Curt A, Belanger LM, Bernardo A, Chan D, Markez JA, et al. Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial. J Neurosurg Spine. 2009;10(3):181–93. https://doi.org/10.3171/2008.10.SPINE08217.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kristin Kraus, MSc, for her editorial assistance with this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Hawryluk.

Ethics declarations

Conflict of Interest

Michael Karsy and Gregory Hawryluk each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurotrauma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karsy, M., Hawryluk, G. Modern Medical Management of Spinal Cord Injury. Curr Neurol Neurosci Rep 19, 65 (2019). https://doi.org/10.1007/s11910-019-0984-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0984-1

Keywords

Navigation