Skip to main content

Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 14

Abstract

Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment. However, some of the LSDs still lack a durable and curative treatment. Therefore, a variety of novel treatments for LSD patients has been developed in the past few years. However, despite significant progress, the efficacy of some of these treatments remains limited because these therapies are often initiated after irreversible organ damage has occurred.

Here, we provide an overview of the known effects of LSDs on stem cell function, as well as a synopsis of available stem cell-based cell and gene therapies that have been/are being developed for the treatment of LSDs. We discuss the advantages and disadvantages of use of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and induced pluripotent stem cell (iPSC)-related (gene) therapies. An overview of current research data indicates that when stem cell and/or gene therapy applications are used in combination with existing therapies such as ERT, SRT, and chaperone therapies, promising results can be achieved, showing that these treatments may result in alleviation of existing symptoms and/or prevention of progression of the disease. All together, these studies offer some insight in LSD stem cell biology and provide a hopeful perspective for the use of stem cells. Further development and improvement of these stem cell (gene) combination therapies may greatly improve the current treatment options and outcomes of patients with a LSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

Adeno-associated vectors

ARSA:

Arylsulfatase A

ASM:

Acid sphingomyelinase

BBB:

Brain-blood barrier

BM:

Bone marrow

BMT:

Bone marrow transplantation

CNS:

Central nervous system

ER:

Endoplasmic reticulum

ERT:

Enzyme replacement therapy

GAG:

Glycosaminoglycan

GD:

Gaucher disease

GSD:

Glycogen storage disease

GUSB:

Beta-glucuronidase

GvHD:

Graft-versus-host disease

HSCT:

Hematopoietic stem cell transplantation

iPSCs:

Induced pluripotent stem cells

LSD:

Lysosomal storage disease/disorder

LV:

Lentiviral vectors

MASCs:

Multipotent adult stem cells

M-CSF:

Macrophage colony-stimulating factor

MLD:

Metachromatic leukodystrophy

MPS:

Mucopolysaccharidosis

MPS-IH:

Hurler’s disease

MSC:

Mesenchymal stem cell

NSC:

Neural stem cells

PB:

Peripheral blood

PCT:

Pharmacological chaperone therapy

SIN:

Self-inactivating

SRT:

Substrate reduction therapy

UCB:

Umbilical cord blood

UCBT:

Umbilical cord blood transplantation

References

  • Aflaki E, Borger DK, Moaven N, Stubblefield BK, Rogers SA, Patnaik S et al (2016) A new glucocerebrosidase chaperone reduces alpha-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with gaucher disease and parkinsonism. J Neurosci 36(28):7441–7452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad I, Hunter RE, Flax JD, Snyder EY, Erickson RP (2007) Neural stem cell implantation extends life in Niemann-Pick C1 mice. J Appl Genet 48(3):269–272

    Article  PubMed  Google Scholar 

  • Aldenhoven M, Kurtzberg J (2015) Cord blood is the optimal graft source for the treatment of pediatric patients with lysosomal storage diseases: clinical outcomes and future directions. Cytotherapy 17(6):765–774

    Article  CAS  PubMed  Google Scholar 

  • Aljurf M, Rizzo JD, Mohty M, Hussain F, Madrigal A, Pasquini MC et al (2014) Challenges and opportunities for HSCT outcome registries: perspective from international HSCT registries experts. Bone Marrow Transplant 49(8):1016–1021

    Article  CAS  PubMed  Google Scholar 

  • Audesse AJ, Webb AE (2018) Enhancing Lysosomal Activation Restores Neural Stem Cell Function During Aging. J Exp Neurosci 12:1179069518795874

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK (2005a) Neuroglial activation in Niemann-Pick Type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci Lett 381(3):234–236

    Article  CAS  PubMed  Google Scholar 

  • Bae JS, Furuya S, Shinoda Y, Endo S, Schuchman EH, Hirabayashi Y et al (2005b) Neurodegeneration augments the ability of bone marrow-derived mesenchymal stem cells to fuse with Purkinje neurons in Niemann-Pick type C mice. Hum Gene Ther 16(8):1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH et al (2007) Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 25(5):1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Ballabio A, Gieselmann V (2009) Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta 1793(4):684–696

    Article  CAS  PubMed  Google Scholar 

  • Bergamin N, Dardis A, Beltrami A, Cesselli D, Rigo S, Zampieri S et al (2013) A human neuronal model of Niemann Pick C disease developed from stem cells isolated from patient’s skin. Orphanet J Rare Dis 8:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Biffi A (2012) Genetically-modified hematopoietic stem cells and their progeny for widespread and efficient protein delivery to diseased sites: the case of lysosomal storage disorders. Curr Gene Ther 12(5):381–388

    Article  CAS  PubMed  Google Scholar 

  • Biffi A, Capotondo A, Fasano S, del Carro U, Marchesini S, Azuma H et al (2006) Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 116(11):3070–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T et al (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341(6148):1233158

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, LeVine SM (2002) Substrate-reduction therapy enhances the benefits of bone marrow transplantation in young mice with globoid cell leukodystrophy. Pediatr Res 51(1):40–47

    Article  PubMed  Google Scholar 

  • Boelens JJ, Prasad VK, Tolar J, Wynn RF, Peters C (2010) Current international perspectives on hematopoietic stem cell transplantation for inherited metabolic disorders. Pediatr Clin North Am 57(1):123–145

    Article  PubMed  Google Scholar 

  • Bohringer J, Santer R, Schumacher N, Gieseke F, Cornils K, Pechan M et al (2017) Enzymatic characterization of novel arylsulfatase A variants using human arylsulfatase A-deficient immortalized mesenchymal stromal cells. Hum Mutat 38(11):1511–1520

    Article  PubMed  CAS  Google Scholar 

  • Borger DK, McMahon B, Roshan Lal T, Serra-Vinardell J, Aflaki E, Sidransky E (2017) Induced pluripotent stem cell models of lysosomal storage disorders. Dis Model Mech 10(6):691–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bou-Gharios G, Abraham D, Olsen I (1993) Lysosomal storage diseases: mechanisms of enzyme replacement therapy. Histochem J 25(9):593–605

    Article  CAS  PubMed  Google Scholar 

  • Campeau PM, Rafei M, Boivin MN, Sun Y, Grabowski GA, Galipeau J (2009) Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome. Blood 114(15):3181–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canals I, Soriano J, Orlandi JG, Torrent R, Richaud-Patin Y, Jimenez-Delgado S et al (2015a) Activity and high-order effective connectivity alterations in sanfilippo C patient-specific neuronal networks. Stem Cell Rep 5(4):546–557

    Article  Google Scholar 

  • Canals I, Beneto N, Cozar M, Vilageliu L, Grinberg D (2015b) EXTL2 and EXTL3 inhibition with siRNAs as a promising substrate reduction therapy for Sanfilippo C syndrome. Sci Rep 5:13654

    Article  PubMed  PubMed Central  Google Scholar 

  • Capotondo A, Milazzo R, Politi LS, Quattrini A, Palini A, Plati T et al (2012) Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proc Natl Acad Sci U S A 109(37):15018–15023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326(5954):818–823

    Article  CAS  PubMed  Google Scholar 

  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Bougneres P, Schmidt M, Kalle CV et al (2012) Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol 507:187–198

    Article  CAS  PubMed  Google Scholar 

  • Chandrachud U, Walker MW, Simas AM, Heetveld S, Petcherski A, Klein M et al (2015) Unbiased cell-based screening in a neuronal cell model of batten disease highlights an interaction between Ca2+ homeostasis, autophagy, and CLN3 protein function. J Biol Chem 290(23):14361–14380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou JY, Jun HS, Mansfield BC (2010) Neutropenia in type Ib glycogen storage disease. Curr Opin Hematol 17(1):36–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox TM, Cachon-Gonzalez MB (2012) The cellular pathology of lysosomal diseases. J Pathol 226(2):241–254

    Article  CAS  PubMed  Google Scholar 

  • Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198(1):54–64

    Article  CAS  PubMed  Google Scholar 

  • de Ru MH, Boelens JJ, Das AM, Jones SA, van der Lee JH, Mahlaoui N et al (2011) Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure. Orphanet J Rare Dis 6:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz-Font A, Chabas A, Grinberg D, Vilageliu L (2006) RNAi-mediated inhibition of the glucosylceramide synthase (GCS) gene: a preliminary study towards a therapeutic strategy for Gaucher disease and other glycosphingolipid storage diseases. Blood Cells Mol Dis 37(3):197–203

    Article  CAS  PubMed  Google Scholar 

  • Doerr J, Bockenhoff A, Ewald B, Ladewig J, Eckhardt M, Gieselmann V et al (2015) Arylsulfatase A overexpressing human iPSC-derived neural cells reduce cns sulfatide storage in a mouse model of metachromatic leukodystrophy. Mol Ther 23(9):1519–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziedzic D, Wegrzyn G, Jakobkiewicz-Banecka J (2010) Impairment of glycosaminoglycan synthesis in mucopolysaccharidosis type IIIA cells by using siRNA: a potential therapeutic approach for Sanfilippo disease. Eur J Hum Genet 18(2):200–205

    Article  CAS  PubMed  Google Scholar 

  • Erlich S, Miranda SR, Visser JW, Dagan A, Gatt S, Schuchman EH (1999) Fluorescence-based selection of gene-corrected hematopoietic stem and progenitor cells from acid sphingomyelinase-deficient mice: implications for Niemann-Pick disease gene therapy and the development of improved stem cell gene transfer procedures. Blood 93(1):80–86

    Article  CAS  PubMed  Google Scholar 

  • Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi JX et al (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 327(22):1549–1555

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara Y, Li XK, Kitazawa Y, Inagaki M, Matsuoka K, Kosuga M et al (2006) Histopathological and behavioral improvement of murine mucopolysaccharidosis type VII by intracerebral transplantation of neural stem cells. Mol Ther 13(3):548–555

    Article  CAS  PubMed  Google Scholar 

  • Gatto F, Redaelli D, Salvade A, Marzorati S, Sacchetti B, Ferina C et al (2012) Hurler disease bone marrow stromal cells exhibit altered ability to support osteoclast formation. Stem Cells Dev 21(9):1466–1477

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Miller W, Orchard PJ, Jones SA, Mercer J, Church HJ et al (2016) Enzyme replacement therapy prior to haematopoietic stem cell transplantation in Mucopolysaccharidosis Type I: 10 year combined experience of 2 centres. Mol Genet Metab 117(3):373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givogri MI, Bottai D, Zhu HL, Fasano S, Lamorte G, Brambilla R et al (2008) Multipotential neural precursors transplanted into the metachromatic leukodystrophy brain fail to generate oligodendrocytes but contribute to limit brain dysfunction. Dev Neurosci 30(5):340–357

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Ospina N, Scharenberg SG, Mostrel N, Bak RO, Mantri S, Quadros RM et al (2019) Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nat Commun 10(1):4045

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin TA, Anderson HC, Wolfe JH (2015) Ex vivo gene therapy using patient iPSC-derived NSCs reverses pathology in the brain of a homologous mouse model. Stem Cell Rep 4(5):835–846

    Article  CAS  Google Scholar 

  • Haneef SA, Doss CG (2016) Personalized pharmacoperones for lysosomal storage disorder: approach for next-generation treatment. Adv Protein Chem Struct Biol 102:225–265

    Article  CAS  PubMed  Google Scholar 

  • Hawkins-Salsbury JA, Reddy AS, Sands MS (2011) Combination therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet 20(R1):R54–R60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi T, Kawagoe S, Otsu M, Shimada Y, Kobayashi H, Hirayama R et al (2014) The generation of induced pluripotent stem cells (iPSCs) from patients with infantile and late-onset types of Pompe disease and the effects of treatment with acid-alpha-glucosidase in Pompe’s iPSCs. Mol Genet Metab 112(1):44–48

    Article  CAS  PubMed  Google Scholar 

  • Hobbs JR (1992) Bone marrow transplants in genetic diseases. Eur J Pediatr 151(Suppl 1):S44–S49

    Article  PubMed  Google Scholar 

  • Hofling AA, Devine S, Vogler C, Sands MS (2004) Human CD34+ hematopoietic progenitor cell-directed lentiviral-mediated gene therapy in a xenotransplantation model of lysosomal storage disease. Mol Ther 9(6):856–865

    Article  CAS  PubMed  Google Scholar 

  • Hoogerbrugge PM, Brouwer OF, Bordigoni P, Ringden O, Kapaun P, Ortega JJ et al (1995) Allogeneic bone marrow transplantation for lysosomal storage diseases. The European Group for Bone Marrow Transplantation. Lancet 345(8962):1398–1402

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Li Y, Nikolaishvili-Feinberg N, Scesa G, Bi Y, Pan D et al (2016) Hematopoietic Stem cell transplantation and lentiviral vector-based gene therapy for Krabbe’s disease: Present convictions and future prospects. J Neurosci Res 94(11):1152–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itier JM, Ret G, Viale S, Sweet L, Bangari D, Caron A et al (2014) Effective clearance of GL-3 in a human iPSC-derived cardiomyocyte model of Fabry disease. J Inherit Metab Dis 37(6):1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Jackson M, Derrick Roberts A, Martin E, Rout-Pitt N, Gronthos S, Byers S (2015) Mucopolysaccharidosis enzyme production by bone marrow and dental pulp derived human mesenchymal stem cells. Mol Genet Metab 114(4):584–593

    Article  CAS  PubMed  Google Scholar 

  • Jaing TH (2007) Umbilical cord blood transplantation: application in pediatric patients. Acta Paediatr Taiwan 48(3):107–111

    PubMed  Google Scholar 

  • Jeyakumar M, Norflus F, Tifft CJ, Cortina-Borja M, Butters TD, Proia RL et al (2001) Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 97(1):327–329

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar M, Smith DA, Williams IM, Borja MC, Neville DC, Butters TD et al (2004) NSAIDs increase survival in the Sandhoff disease mouse: synergy with N-butyldeoxynojirimycin. Ann Neurol 56(5):642–649

    Article  CAS  PubMed  Google Scholar 

  • Jin HK, Schuchman EH (2003) Ex vivo gene therapy using bone marrow-derived cells: combined effects of intracerebral and intravenous transplantation in a mouse model of Niemann-Pick disease. Mol Ther 8(6):876–885

    Article  CAS  PubMed  Google Scholar 

  • Jin HK, Carter JE, Huntley GW, Schuchman EH (2002) Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest 109(9):1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–946

    Article  PubMed  Google Scholar 

  • Kawagoe S, Higuchi T, Otaka M, Shimada Y, Kobayashi H, Ida H et al (2013) Morphological features of iPS cells generated from Fabry disease skin fibroblasts using Sendai virus vector (SeVdp). Mol Genet Metab 109(4):386–389

    Article  CAS  PubMed  Google Scholar 

  • Kennedy DW, Abkowitz JL (1997) Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 90(3):986–993

    Article  CAS  PubMed  Google Scholar 

  • Kido J, Nakamura K, Era T (2020) Role of induced pluripotent stem cells in lysosomal storage diseases. Mol Cell Neurosci 108:103540

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Jun HS, Mead PA, Mansfield BC, Chou JY (2008) Neutrophil stress and apoptosis underlie myeloid dysfunction in glycogen storage disease type Ib. Blood 111(12):5704–5711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobolak J, Molnar K, Varga E, Bock I, Jezso B, Teglasi A et al (2019) Modelling the neuropathology of lysosomal storage disorders through disease-specific human induced pluripotent stem cells. Exp Cell Res 380(2):216–233

    Article  CAS  PubMed  Google Scholar 

  • Kose S, Aerts Kaya F, Kuskonmaz B, Uckan CD (2019) Characterization of mesenchymal stem cells in mucolipidosis type II (I-cell disease). Turk J Biol 43(3):171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krall WJ, Challita PM, Perlmutter LS, Skelton DC, Kohn DB (1994) Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation. Blood 83(9):2737–2748

    Article  CAS  PubMed  Google Scholar 

  • Krivit W, Peters C, Shapiro EG (1999) Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol 12(2):167–176

    Article  CAS  PubMed  Google Scholar 

  • Langford-Smith A, Wilkinson FL, Langford-Smith KJ, Holley RJ, Sergijenko A, Howe SJ et al (2012) Hematopoietic stem cell and gene therapy corrects primary neuropathology and behavior in mucopolysaccharidosis IIIA mice. Mol Ther 20(8):1610–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal AF, Espejo-Mojica AJ, Sanchez OF, Ramirez CM, Reyes LH, Cruz JC et al (2020) Lysosomal storage diseases: current therapies and future alternatives. J Mol Med (Berl) 98(7):931–946

    Article  Google Scholar 

  • Lecourt S, Mouly E, Freida D, Cras A, Ceccaldi R, Heraoui D et al (2013) A prospective study of bone marrow hematopoietic and mesenchymal stem cells in type 1 Gaucher disease patients. PLoS One 8(7):e69293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC et al (2007) Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 13(4):439–447

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH et al (2010) Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells 28(4):821–831

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kang JE, Lee JK, Bae JS, Jin HK (2013) Bone-marrow-derived mesenchymal stem cells promote proliferation and neuronal differentiation of Niemann-Pick type C mouse neural stem cells by upregulation and secretion of CCL2. Hum Gene Ther 24(7):655–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Lee JK, Park MH, Hong YR, Marti HH, Kim H et al (2014) Pathological roles of the VEGF/SphK pathway in Niemann-Pick type C neurons. Nat Commun 5:5514

    Article  CAS  PubMed  Google Scholar 

  • Lemonnier T, Blanchard S, Toli D, Roy E, Bigou S, Froissart R et al (2011) Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells. Hum Mol Genet 20(18):3653–3666

    Article  CAS  PubMed  Google Scholar 

  • Li M (2018) Enzyme replacement therapy: a review and its role in treating lysosomal storage diseases. Pediatr Ann 47(5):e191–e1e7

    Article  PubMed  Google Scholar 

  • Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247(4942):574–577

    Article  CAS  PubMed  Google Scholar 

  • Lojewski X, Staropoli JF, Biswas-Legrand S, Simas AM, Haliw L, Selig MK et al (2014) Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet 23(8):2005–2022

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Xu M, Li R, Dai S, Beers J, Chen G et al (2016) Induced pluripotent stem cells for disease modeling and evaluation of therapeutics for Niemann-Pick disease type A. Stem Cells Transl Med 5(12):1644–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund RJ, Narva E, Lahesmaa R (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13(10):732–744

    Article  CAS  PubMed  Google Scholar 

  • Lutzko C, Omori F, Abrams-Ogg AC, Shull R, Li L, Lau K et al (1999a) Gene therapy for canine alpha-L-iduronidase deficiency: in utero adoptive transfer of genetically corrected hematopoietic progenitors results in engraftment but not amelioration of disease. Hum Gene Ther 10(9):1521–1532

    Article  CAS  PubMed  Google Scholar 

  • Lutzko C, Kruth S, Abrams-Ogg AC, Lau K, Li L, Clark BR et al (1999b) Genetically corrected autologous stem cells engraft, but host immune responses limit their utility in canine alpha-L-iduronidase deficiency. Blood 93(6):1895–1905

    CAS  PubMed  Google Scholar 

  • Maetzel D, Sarkar S, Wang H, Abi-Mosleh L, Xu P, Cheng AW et al (2014) Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Rep 2(6):866–880

    Article  CAS  Google Scholar 

  • Maguire JA, Cardenas-Diaz FL, Gadue P, French DL (2019) Highly efficient CRISPR-Cas9-mediated genome editing in human pluripotent stem cells. Curr Protoc Stem Cell Biol 48(1):e64

    Article  PubMed  CAS  Google Scholar 

  • Martin HR, Poe MD, Provenzale JM, Kurtzberg J, Mendizabal A, Escolar ML (2013) Neurodevelopmental outcomes of umbilical cord blood transplantation in metachromatic leukodystrophy. Biol Blood Marrow Transplant 19(4):616–624

    Article  PubMed  Google Scholar 

  • Martin PK, Stilhano RS, Samoto VY, Takiya CM, Peres GB, da Silva Michelacci YM et al (2014) Mesenchymal stem cells do not prevent antibody responses against human alpha-L-iduronidase when used to treat mucopolysaccharidosis type I. PLoS One 9(3):e92420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA et al (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meneghini V, Frati G, Sala D, De Cicco S, Luciani M, Cavazzin C et al (2017) Generation of human induced pluripotent stem cell-derived bona fide neural stem cells for ex vivo gene therapy of metachromatic leukodystrophy. Stem Cells Transl Med 6(2):352–368

    Article  CAS  PubMed  Google Scholar 

  • Meng XL, Shen JS, Ohashi T, Maeda H, Kim SU, Eto Y (2003) Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse. J Neurosci Res 74(2):266–277

    Article  CAS  PubMed  Google Scholar 

  • Meyerrose TE, De Ugarte DA, Hofling AA, Herrbrich PE, Cordonnier TD, Shultz LD et al (2007) In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells 25(1):220–227

    Article  CAS  PubMed  Google Scholar 

  • Meyerrose TE, Roberts M, Ohlemiller KK, Vogler CA, Wirthlin L, Nolta JA et al (2008) Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells 26(7):1713–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda SR, Erlich S, Friedrich VL Jr, Haskins ME, Gatt S, Schuchman EH (1998) Biochemical, pathological, and clinical response to transplantation of normal bone marrow cells into acid sphingomyelinase-deficient mice. Transplantation 65(7):884–892

    Article  CAS  PubMed  Google Scholar 

  • Miranda SR, Erlich S, Friedrich VL Jr, Gatt S, Schuchman EH (2000) Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann-Pick disease. Gene Ther 7(20):1768–1776

    Article  CAS  PubMed  Google Scholar 

  • Miranda CO, Teixeira CA, Liz MA, Sousa VF, Franquinho F, Forte G et al (2011) Systemic delivery of bone marrow-derived mesenchymal stromal cells diminishes neuropathology in a mouse model of Krabbe’s disease. Stem Cells 29(11):1738–1751

    Article  CAS  PubMed  Google Scholar 

  • Mogul MJ (2000) Unrelated cord blood transplantation vs matched unrelated donor bone marrow transplantation: the risks and benefits of each choice. Bone Marrow Transplant 25(Suppl 2):S58–S60

    Article  PubMed  Google Scholar 

  • Muller I, Kustermann-Kuhn B, Holzwarth C, Isensee G, Vaegler M, Harzer K et al (2006) In vitro analysis of multipotent mesenchymal stromal cells as potential cellular therapeutics in neurometabolic diseases in pediatric patients. Exp Hematol 34(10):1413–1419

    Article  PubMed  CAS  Google Scholar 

  • Navarro Negredo P, Yeo RW, Brunet A (2020) Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 27(2):202–223

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T et al (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7(1):84–96

    Article  CAS  PubMed  Google Scholar 

  • Olsen I, Dean MF, Harris G, Muir H (1981) Direct transfer of a lysosomal enzyme from lymphoid cells to deficient fibroblasts. Nature 291(5812):244–247

    Article  CAS  PubMed  Google Scholar 

  • Olsen I, Dean MF, Muir H, Harris G (1982) Acquisition of beta-glucuronidase activity by deficient fibroblasts during direct contact with lymphoid cells. J Cell Sci 55:211–231

    Article  CAS  PubMed  Google Scholar 

  • Olsen I, Muir H, Smith R, Fensom A, Watt DJ (1983) Direct enzyme transfer from lymphocytes is specific. Nature 306(5938):75–77

    Article  CAS  PubMed  Google Scholar 

  • Orchard PJ, Blazar BR, Wagner J, Charnas L, Krivit W, Tolar J (2007) Hematopoietic cell therapy for metabolic disease. J Pediatr 151(4):340–346

    Article  PubMed  Google Scholar 

  • Otsu M, Nakayama T, Inoue N (2014) Pluripotent stem cell-derived neural stem cells: From basic research to applications. World J Stem Cells 6(5):651–657

    Article  PubMed  PubMed Central  Google Scholar 

  • Parenti G, Andria G, Ballabio A (2015) Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 66:471–486

    Article  CAS  PubMed  Google Scholar 

  • Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 25(2):102–115

    CAS  Google Scholar 

  • Peters C, Steward CG (2003) National Marrow Donor P, International Bone Marrow Transplant R, Working Party on Inborn Errors EBMTG. Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant 31(4):229–239

    Article  CAS  PubMed  Google Scholar 

  • Phinney DG, Isakova IA (2014) Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Res 1573:92–107

    Article  CAS  PubMed  Google Scholar 

  • Pisati F, Bossolasco P, Meregalli M, Cova L, Belicchi M, Gavina M et al (2007) Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transplant 16(1):41–55

    Article  PubMed  Google Scholar 

  • Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poe MD, Chagnon SL, Escolar ML (2014) Early treatment is associated with improved cognition in Hurler syndrome. Ann Neurol 76(5):747–753

    Article  PubMed  Google Scholar 

  • Prasad VK, Kurtzberg J (2010a) Transplant outcomes in mucopolysaccharidoses. Semin Hematol 47(1):59–69

    Article  CAS  PubMed  Google Scholar 

  • Prasad VK, Kurtzberg J (2010b) Cord blood and bone marrow transplantation in inherited metabolic diseases: scientific basis, current status and future directions. Br J Haematol 148(3):356–372

    Article  PubMed  Google Scholar 

  • Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z et al (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27(4):355–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Rappeport JM, Ginns EI (1984) Bone-marrow transplantation in severe Gaucher’s disease. N Engl J Med 311(2):84–88

    Article  CAS  PubMed  Google Scholar 

  • Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J et al (2015) Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 290(5):3121–3136

    Article  CAS  PubMed  Google Scholar 

  • Rigante D, Cipolla C, Basile U, Gulli F, Savastano MC (2017) Overview of immune abnormalities in lysosomal storage disorders. Immunol Lett 188:79–85

    Article  CAS  PubMed  Google Scholar 

  • Rowe RG, Daley GQ (2019) Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet 20(7):377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai K, Iizuka S, Shen JS, Meng XL, Mori T, Umezawa A et al (2004) Brain transplantation of genetically modified bone marrow stromal cells corrects CNS pathology and cognitive function in MPS VII mice. Gene Ther 11(19):1475–1481

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Kobayashi H, Higuchi T, Shimada Y, Era T, Kimura S et al (2015) Disease modeling and lentiviral gene transfer in patient-specific induced pluripotent stem cells from late-onset Pompe disease patient. Mol Ther Methods Clin Dev 2:15023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato Y, Kobayashi H, Higuchi T, Shimada Y, Ida H, Ohashi T (2016) TFEB overexpression promotes glycogen clearance of Pompe disease iPSC-derived skeletal muscle. Mol Ther Methods Clin Dev 3:16054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawada T, Tanaka A, Higaki K, Takamura A, Nanba E, Seto T et al (2009) Intracerebral cell transplantation therapy for murine GM1 gangliosidosis. Brain Dev 31(10):717–724

    Article  PubMed  Google Scholar 

  • Seo Y, Yang SR, Jee MK, Joo EK, Roh KH, Seo MS et al (2011) Human umbilical cord blood-derived mesenchymal stem cells protect against neuronal cell death and ameliorate motor deficits in Niemann Pick type C1 mice. Cell Transplant 20(7):1033–1047

    Article  PubMed  Google Scholar 

  • Sessa M, Lorioli L, Fumagalli F, Acquati S, Redaelli D, Baldoli C et al (2016) Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 388(10043):476–487

    Article  CAS  PubMed  Google Scholar 

  • Shihabuddin LS, Numan S, Huff MR, Dodge JC, Clarke J, Macauley SL et al (2004) Intracerebral transplantation of adult mouse neural progenitor cells into the Niemann-Pick-A mouse leads to a marked decrease in lysosomal storage pathology. J Neurosci 24(47):10642–10651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidman RL, Li J, Stewart GR, Clarke J, Yang W, Snyder EY et al (2007) Injection of mouse and human neural stem cells into neonatal Niemann-Pick A model mice. Brain Res 1140:195–204

    Article  CAS  PubMed  Google Scholar 

  • Sim SW, Park TS, Kim SJ, Park BC, Weinstein DA, Lee YM et al (2018) Aberrant proliferation and differentiation of glycogen storage disease type Ib mesenchymal stem cells. FEBS Lett 592(2):162–171

    Article  CAS  PubMed  Google Scholar 

  • Snyder EY, Taylor RM, Wolfe JH (1995) Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374(6520):367–370

    Article  CAS  PubMed  Google Scholar 

  • Snyder EY, Daley GQ, Goodell M (2004) Taking stock and planning for the next decade: realistic prospects for stem cell therapies for the nervous system. J Neurosci Res 76(2):157–168

    Article  CAS  PubMed  Google Scholar 

  • Soga M, Ishitsuka Y, Hamasaki M, Yoneda K, Furuya H, Matsuo M et al (2015) HPGCD outperforms HPBCD as a potential treatment for Niemann-Pick disease type C during disease modeling with iPS cells. Stem Cells 33(4):1075–1088

    Article  CAS  PubMed  Google Scholar 

  • Son MY, Kwak JE, Seol B, Lee DY, Jeon H, Cho YS (2015) A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation. J Pathol 237(1):98–110

    Article  CAS  PubMed  Google Scholar 

  • Squeri G, Passerini L, Ferro F, Laudisa C, Tomasoni D, Deodato F et al (2019) Targeting a Pre-existing Anti-transgene T Cell Response for Effective Gene Therapy of MPS-I in the Mouse Model of the Disease. Mol Ther 27(7):1215–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone MAB et al (2017) Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes. J Cell Physiol 232(12):3454–3467

    Article  CAS  PubMed  Google Scholar 

  • Starer F, Sargent JD, Hobbs JR (1987) Regression of the radiological changes of Gaucher’s disease following bone marrow transplantation. Br J Radiol 60(720):1189–1195

    Article  CAS  PubMed  Google Scholar 

  • Stok M, de Boer H, Huston MW, Jacobs EH, Roovers O, Visser TP et al (2020) Lentiviral hematopoietic stem cell gene therapy corrects murine Pompe disease. Mol Ther Methods Clin Dev 17:1014–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun A (2018) Lysosomal storage disease overview. Ann Transl Med 6(24):476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Takenaka T, Qin G, Brady RO, Medin JA (1999) Circulating alpha-galactosidase A derived from transduced bone marrow cells: relevance for corrective gene transfer for Fabry disease. Hum Gene Ther 10(12):1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Takenaka T, Murray GJ, Qin G, Quirk JM, Ohshima T, Qasba P et al (2000) Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells. Proc Natl Acad Sci U S A 97(13):7515–7520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talib S, Shepard KA (2020) Unleashing the cure: Overcoming persistent obstacles in the translation and expanded use of hematopoietic stem cell-based therapies. Stem Cells Transl Med 9(4):420–426

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan EY, Boelens JJ, Jones SA, Wynn RF (2019) Hematopoietic Stem Cell Transplantation in Inborn Errors of Metabolism. Front Pediatr 7:433

    Article  PubMed  PubMed Central  Google Scholar 

  • Tancini B, Buratta S, Sagini K, Costanzi E, Delo F, Urbanelli L et al (2019) Insight into the role of extracellular vesicles in lysosomal storage disorders. Genes (Basel) 10(7)

    Google Scholar 

  • Tiscornia G, Vivas EL, Matalonga L, Berniakovich I, Barragan Monasterio M, Eguizabal C et al (2013) Neuronopathic Gaucher’s disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Hum Mol Genet 22(4):633–645

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Lai RC, Zhang B, Lim SK (2018) MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans 46(4):843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolar J, Park IH, Xia L, Lees CJ, Peacock B, Webber B et al (2011) Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood 117(3):839–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traas AM, Wang P, Ma X, Tittiger M, Schaller L, O’Donnell P et al (2007) Correction of clinical manifestations of canine mucopolysaccharidosis I with neonatal retroviral vector gene therapy. Mol Ther 15(8):1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Trilck M, Peter F, Zheng C, Frank M, Dobrenis K, Mascher H et al (2017) Diversity of glycosphingolipid GM2 and cholesterol accumulation in NPC1 patient-specific iPSC-derived neurons. Brain Res 1657:52–61

    Article  CAS  PubMed  Google Scholar 

  • van Til NP, Stok M, Aerts Kaya FS, de Waard MC, Farahbakhshian E, Visser TP et al (2010) Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. Blood 115(26):5329–5337

    Article  PubMed  CAS  Google Scholar 

  • Visigalli I, Delai S, Politi LS, Di Domenico C, Cerri F, Mrak E et al (2010) Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood 116(24):5130–5139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitley CB, Belani KG, Chang PN, Summers CG, Blazar BR, Tsai MY et al (1993) Long-term outcome of Hurler syndrome following bone marrow transplantation. Am J Med Genet 46(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Wicks SE, Londot H, Zhang B, Dowden J, Klopf-Eiermann J, Fisher-Perkins JM et al (2011) Effect of intrastriatal mesenchymal stromal cell injection on progression of a murine model of Krabbe disease. Behav Brain Res 225(2):415–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu M, Motabar O, Ferrer M, Marugan JJ, Zheng W, Ottinger EA (2016) Disease models for the development of therapies for lysosomal storage diseases. Ann N Y Acad Sci 1371(1):15–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C et al (2014) Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 22(7):1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi N, Abdollahii S, Kouhbanani MAJ, Hassanzadeh A (2020) Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality? J Cell Physiol

    Google Scholar 

  • Zheng Y, Rozengurt N, Ryazantsev S, Kohn DB, Satake N, Neufeld EF (2003) Treatment of the mouse model of mucopolysaccharidosis I with retrovirally transduced bone marrow. Mol Genet Metab 79(4):233–244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Turkish Ministry of Development, PediSTEM nr. 2006-K120640, and the Scientific and Technological Research Council of Turkey (TUBİTAK), project nr. 219S675.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors declare that this article does not contain any studies with human participants or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petek Korkusuz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Köse, S., Aerts-Kaya, F., Uçkan Çetinkaya, D., Korkusuz, P. (2021). Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 14. Advances in Experimental Medicine and Biology(), vol 1347. Springer, Cham. https://doi.org/10.1007/5584_2021_639

Download citation

Publish with us

Policies and ethics