Skip to main content

Microbiological Diagnosis of Implant-Related Infections: Scientific Evidence and Cost/Benefit Analysis of Routine Antibiofilm Processing

  • Chapter
  • First Online:
A Modern Approach to Biofilm-Related Orthopaedic Implant Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 971))

Abstract

Prosthetic joint infection is one of the most severe complication following joint arthroplasty, producing a significant worsening of patient’s quality of life. Management of PJIs requires extended courses of antimicrobial therapy, multiple surgical interventions and prolonged hospital stay, with a consequent economic burden, which is thought to markedly increase in the next years due to the expected burden in total joint arthroplasties. The present review summarizes the present knowledge on microbiological diagnosis of prosthetic joint infections, focusing on aethiological agents and discussing pros and cons of the available strategies for their diagnosis.

Intra-operative clinical diagnosis and pathogen identification is considered the diagnostic benchmark, however the presence of bacterial biofilm makes pathogen detection with traditional microbiological techniques highly ineffective. Diagnosis of PJIs is a rather complex challenge for orthopedics and requires a strict collaboration between different specialists: orthopaedics, infectivologists, microbiologists, pathologists and radiologists. Diagnostic criteria have been described by national and international association and scientific societies. Clinicians should be trained on how to use it, but more importantly they should know potential and limitation of the available tests in order to use them appropriately.

The original version of this chapter has been revised. An erratum to this chapter can be found at DOI 10.1007/5584_2017_21

An erratum to this chapter can be found at http://dx.doi.org/10.1007/5584_2017_21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal VK, Higuera C, Deirmengian G et al (2013) Swab cultures are not as effective as tissue cultures for diagnosis of periprosthetic joint infection. Clin Orthop Relat Res 471:3196–3203

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkins BL, Athanasou N, Deeks JJ et al (1998) Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. The OSIRIS collaborative study group. J Clin Microbiol 36:2932–2939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrack RL, Harris WH (1993) The value of aspiration of the hip joint before revision total hip arthroplasty. J Bone Joint Surg Am 75:66–76

    Article  CAS  PubMed  Google Scholar 

  • Barrack RL, Jennings RW, Wolfe MW et al (1997) The Coventry award. The value of preoperative aspiration before total knee revision. Clin Orthop Relat Res 345:8–16

    Article  Google Scholar 

  • Bartalesi F, Fallani S, Salomoni E et al (2012) Candida glabrata prosthetic hip infection. Am J Orthop 41:500–505

    PubMed  Google Scholar 

  • Becker K, Heilmann C, Peters G (2014) Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bemer P, Leger J, Tande D et al (2016) How many samples and how many culture media to diagnose a prosthetic joint infection: a clinical and microbiological prospective multicenter study. J Clin Microbiol 54:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berbari EF, Hanssen AD, Duffy MC et al (1998) Prosthetic joint infection due to Mycobacterium tuberculosis: a case series and review of the literature. Am J Orthop 27:219–227

    CAS  PubMed  Google Scholar 

  • Bjerkan G, Witsø E, Bergh K (2009) Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. Acta Orthop 80:245–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackmur JP, Tang EYH, Dave J et al (2014) Use of broth cultures peri-operatively to optimize the microbiological diagnosis of musculoskeletal implant infections. Bone Joint J 96-B:1566–1570

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz A, Uçkay I, Lustig S et al (2012) Microbiological markers suggesting high inoculum size at time of surgery are risk factors for relapse in patients with Staphylococcus aureus prosthetic joint infection. J Infect 65:582–584

    Article  PubMed  Google Scholar 

  • Butler-Wu SM, Burns EM, Pottinger PS et al (2011) Optimization of periprosthetic culture for diagnosis of Propionibacterium acnes prosthetic joint infection. J Clin Microbiol 49:2490–2495

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell KA, Cunningham C, Hasan S et al (2015) Risk factors for developing Staphylococcus aureus nasal colonization in spine and arthroplasty surgery. Bull Hosp Jt Dis 73:276–281

    Google Scholar 

  • Caola I, Drago L (2013) Percorso diagnostico: infezioni delle protesi articolari e dei mezzi di osteosintesi. Available at http://www.amcli.it/wp-content/uploads/2015/10/ PercorsodiagnosticoprotesiarticolariAMCLI2013.pdf. Accessed 6 June 2016

  • Carrega G, Bartolacci V, Burastero G et al (2013) Prosthetic joint infections due to Mycobacterium tuberculosis: a report of 5 cases. Int J Surg Case Rep 4:178–181

    Article  PubMed  Google Scholar 

  • Cazanave C, Greenwood-Quaintance KE et al (2012) Corynebacterium prosthetic joint infection. J Clin Microbiol 50:1518–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazanave C, Greenwood-Quaintance KE et al (2013) Rapid molecular microbiologic diagnosis of prosthetic joint infections. J Clin Microbiol 51:2280–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Sanctis J, Teixeira L, van Duin D et al (2014) Complex prosthetic joint infections due to carbapenemase-producing Klebsiella pneumoniae: a unique challenge in the era of untreatable infections. Int J Infect Dis 25:73–78

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vecchi E, Bortolin M, Signori V et al (2016) Treatment with Dithiothreitol improves bacterial recovery from tissue samples in osteoarticular and joint infections. J Arthroplasty. doi:10.1016/j.arth.2016.05.008

    PubMed  Google Scholar 

  • DeHaan A, Huff T, Schabel K et al (2013) Multiple cultures and extended incubation for hip and knee arthroplasty revision: impact on clinical care. J Arthroplasty 28(8 Suppl):59–65

    Article  PubMed  Google Scholar 

  • Dilisio MF, Miller LR, Warner JJ et al (2014) Arthroscopic tissue culture for the evaluation of periprosthetic shoulder infection. J Bone Joint Surg Am 96:1952–1958

    Article  PubMed  Google Scholar 

  • Drago L, Romanò CL, Mattina R et al (2012) Does dithiothreitol improve bacterial detection from infected prostheses? A pilot study. Clin Orthop Relat Res 470:2915–2925

    Article  PubMed  PubMed Central  Google Scholar 

  • Drago L, Signori V, De Vecchi E et al (2013) Use of dithiothreitol to improve the diagnosis of prosthetic joint infections. J Orthop Res 31:1694–1699

    CAS  PubMed  Google Scholar 

  • Drago L, De Vecchi E, Cappelletti L et al (2014) Role and antimicrobial resistance of staphylococci involved in prosthetic joint infections. Int J Artif Organs 37:414–421

    Article  PubMed  Google Scholar 

  • Drago L, De Vecchi E, Cappelletti L et al (2015) Prolonging culture to 15 days improves bacterial detection in bone and joint infections. Eur J Clin Microbiol Infect Dis 34:1809–1813

    Article  CAS  PubMed  Google Scholar 

  • Drago L, Lidgren L, Bottinelli E et al (2016) Mapping of microbiological procedures by the members of the International Society of Orthopaedic Centers (ISOC) for diagnosis of periprosthetic infections. J Clin Microbiol 54:1402–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutronc H, Dauchy FA, Cazanave C et al (2010) Candida prosthetic infections: case series and literature review. Scand J Infect Dis 42:890–895

    Article  PubMed  Google Scholar 

  • Esteban J, Gomez-Barrena E, Cordero J et al (2008) Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. J Clin Microbiol 46:488–492

    Article  PubMed  Google Scholar 

  • Everts RJ, Chambers ST, Murdoch DR et al (2004) Successful antimicrobial therapy and implant retention for streptococcal infection of prosthetic joints. ANZ J Surg 74:210–214

    Article  PubMed  Google Scholar 

  • Fernandes A, Dias M (2013) The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms. J Clin Diagn Res 7:219–223

    PubMed  PubMed Central  Google Scholar 

  • Fink B, Makowiak C, Fuerst M et al (2008) The value of synovial biopsy, joint aspiration and C-reactive protein in the diagnosis of late peri-prosthetic infection of total knee replacements. J Bone Joint Surg (Br) 90:874–878

    Article  CAS  Google Scholar 

  • Font-Vizcarra L, Spangehl MJ, Masri BA et al (1999) Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties. J Bone Joint Surg Am 81:672–683

    Article  Google Scholar 

  • Font-Vizcarra L, García S, Martínez-Pastor JC et al (2010) Blood culture flasks for culturing synovial fluid in prosthetic joint infections. Clin Orthop Relat Res 468:2238–2243

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghanem E, Ketonis C, Restrepo C et al (2009) Periprosthetic infection: where do we stand with regard to Gram stain? Acta Orthop 80:37–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwood-Quaintance KE, Uhl JR et al (2014) Diagnosis of prosthetic joint infection by use of PCR-electrospray ionization mass spectrometry. J Clin Microbiol 52:642–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Berbari EF, Osmon DR et al (2014) Prosthetic joint infection due to Salmonella species: a case series. BMC Infect Dis 14:633

    Article  PubMed  PubMed Central  Google Scholar 

  • Hischebeth GT, Randau TM, Buhr JK et al (2016) Unyvero i60 implant and tissue infection (ITI) multiplex PCR system in diagnosing periprosthetic joint infection. J Microbiol Methods 121:27–32

    Article  CAS  PubMed  Google Scholar 

  • Holinka J, Bauer L, Hirschl AM et al (2011) Sonication cultures of explanted components as an add-on test to routinely conducted microbiological diagnostics improve pathogen detection. J Orthop Res 29:617–622

    Article  PubMed  Google Scholar 

  • Holleyman RJ, Baker PN, Charlett A et al (2016) Analysis of causative microorganism in 248 primary hip arthroplasties revised for infection: a study using the NJR dataset. Hip Int 26:82–89

    Article  PubMed  Google Scholar 

  • Hughes JG, Vetter EA, Patel R et al (2001) Culture with BACTEC Peds Plus/F bottle compared with conventional methods for detection of bacteria in synovial fluid. J Clin Microbiol 39:4468–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huotari K, Peltola M, Jamsen E (2015) The incidence of late prosthetic joint infections. A registry based study on 112,708 primary hip and knee replacement. Acta Orthop 86:321–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Janz V, Wassilew GI, Kribus M et al (2015) Improved identification of polymicrobial infection in total knee arthroplasty through sonicate fluid cultures. Arch Orthop Trauma Surg 135:1453–1457

    Article  CAS  PubMed  Google Scholar 

  • Jordan RW, Saithna A, Smith N et al (2015) Does intraoperative tissue sample enrichment help or hinder the identification of microorganisms in prosthetic joint infection? Eur J Orthop Surg Traumatol 25:731–736

    Article  PubMed  Google Scholar 

  • Kamme C, Lindberg L (1981) Aerobic and anaerobic bacteria in deep infections after total hip arthroplasty: differential diagnosis between infectious and non-infectious loosening. Clin Orthop Relat Res 154:201–207

    Google Scholar 

  • Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA (2016) Periprosthetic joint infection. Lancet 387:386–394

    Article  PubMed  Google Scholar 

  • Kurtz SM, Lau E, Watson H et al (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27(Suppl 8):61–65e1

    Article  PubMed  Google Scholar 

  • Langvatn H, Everts RJ, Chambers ST et al (2004) Successful antimicrobial therapy and implant retention for streptococcal infection of prosthetic joints. ANZ J Surg 74:210–214

    Article  Google Scholar 

  • Langvatn H, Lutro O, Dale H et al (2015) Bacterial and hematological findings in infected total hip arthroplasties in Norway assessment of 278 revisions due to infection in the Norwegian Arthroplasty Register. Open Orthop J 9:445–449

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine BR, Evans BG (2001) Use of blood culture vial specimens in intraoperative detection of infection. Clin Orthop Relat Res 382:222–231

    Article  Google Scholar 

  • Lovati AB, Romanò CL, Bottagisio M et al (2016) Modeling Staphylococcus epidermidis-induced non-unions: subclinical and clinical evidence in rats. PLoS One 11:e0147447

    Article  PubMed  PubMed Central  Google Scholar 

  • Maduka-Ezeh AN, Greenwood-Quaintance KE, Karau MJ et al (2012) Antimicrobial susceptibility and biofilm formation of Staphylococcus epidermidis small colony variants associated with prosthetic joint infection. Diagn Microbiol Infect Dis 74:224–229

    Article  CAS  PubMed  Google Scholar 

  • Månsson E, Hellmark B, Sundqvist M et al (2015) Sequence types of Staphylococcus epidermidis associated with prosthetic joint infections are not present in the laminar airflow during prosthetic joint surgery. APMIS 123:589–595

    Article  PubMed  Google Scholar 

  • Melendez DP, Greenwood-Quaintance KE, Berbari EF et al (2016) Evaluation of a genus- and group-specific rapid PCR assay panel on synovial fluid for diagnosis of prosthetic joint infection. J Clin Microbiol 54:120–126

    Article  CAS  PubMed  Google Scholar 

  • Murillo O, Grau I, Lora-Tamayo J et al (2015) The changing epidemiology of bacteraemic osteoarticular infections in the early 21st century. Clin Microbiol Infect 21:254.e1–254.e8

    Article  CAS  Google Scholar 

  • Osmon DR, Berbari EF, Berendt AR et al (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56:e1–e25

    Article  PubMed  Google Scholar 

  • Ouyang Z, Zhai Z, Qin A et al (2015) Limitations of Gram staining for the diagnosis of infections following total or hip arthroplasty. Exp Ther Med 9:1857–1864

    PubMed  PubMed Central  Google Scholar 

  • Parvizi J, Zmistowski B, Berbari EF et al (2011) New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res 469:2992–2994

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearle AD, Bates JE, Tolo ET et al (2003) Clostridium infection in a knee extensor mechanism allograft: case report and review. Knee 10:149–153

    Article  PubMed  Google Scholar 

  • Peel TN, Cheng AC, Lorenzo YP et al (2013) Factors influencig the cost of prosthetic joint infection treatment. J Hosp Infect 85:213–219

    Article  CAS  PubMed  Google Scholar 

  • Peel TN, Dylla BL, Hughes JG et al (2016) Improved diagnosis of prosthetic joint infection by culturing periprosthetic tissue specimens in blood culture bottles. MBio 7:e01776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piper KE, Jacobson MJ, Cofield RH et al (2009) Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J Clin Microbiol 47:1878–1884

    Article  PubMed  PubMed Central  Google Scholar 

  • Portillo ME, Salvadó M, Trampuz A et al (2013) Sonication versus vortexing of implants for diagnosis of prosthetic joint infection. J Clin Microbiol 51:591–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proctor RA, von Eiff C, Kahl BC et al (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305

    Article  CAS  PubMed  Google Scholar 

  • Rak M, Barlic-Maganja D, Kavcic M et al (2013) Comparison of molecular and culture method in diagnosis of prosthetic joint infection. FEMS Microbiol Lett 343:42–48

    Article  CAS  PubMed  Google Scholar 

  • Rak M, Barlič-Maganja D, Kavčič M et al (2015) Identification of the same species in at least two intra-operative samples for prosthetic joint infection diagnostics yields the best results with broad-range polymerase chain reaction. Int Orthop 39:975–979

    Article  PubMed  Google Scholar 

  • Rasouli MR, Harandi AA, Adeli B et al (2012) Revision total knee arthroplasty: infection should be ruled out in all cases. J Arthroplasty 27:1239–1243

    Article  PubMed  Google Scholar 

  • Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Pardo D, Pigrau C, Lora-Tamayo J et al (2014) Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect 20:O911–O919

    Article  PubMed  Google Scholar 

  • Romanò CL, De Vecchi E, Vassena C et al (2013) A case of a late and atypical knee prosthetic infection by no-biofilm producer Pasteurella multocida strain identified by pyrosequencing. Pol J Microbiol 62:435–438

    PubMed  Google Scholar 

  • Roux AL, Sivadon-Tardy V, Bauer T et al (2011) Diagnosis of prosthetic joint infection by beadmill processing of a periprosthetic specimen. Clin Microbiol Infect 17:447–450

    Article  PubMed  Google Scholar 

  • Saeed K (2014) Diagnostics in prosthetic joint infections. J Antimicrob Chemother 69(Suppl 1):i11–i19

    Article  CAS  PubMed  Google Scholar 

  • Schäfer P, Fink B, Sandow D et al (2008) Prolonged bacterial culture to identify late periprosthetic joint infection: a promising strategy. Clin Infect Dis 47:1403–1409

    Article  PubMed  Google Scholar 

  • Sendi P, Christensson B, Uçkay I et al (2011) Group B streptococcus in prosthetic hip and knee joint-associated infections. J Hosp Infect 79:64–69

    Article  CAS  PubMed  Google Scholar 

  • Senneville E, Joulie D, Legout L et al (2011) Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis 53:334–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah NB, Tande AJ, Patel R et al (2015) Anaerobic prosthetic joint infection. Anaerobe 36:1–8

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Tang J, Wang Q et al (2015) Sonication of explanted prosthesis combined with incubation in BD Bactec bottles for pathogen-based diagnosis of prosthetic joint infection. J Clin Microbiol 53:777–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Société de Pathologie Infectieuse de Langue Française (SPILF), Collège des Universitaires de Maladies Infectieuses et Tropicales (CMIT), Groupe de Pathologie Infectieuse Pédiatrique (GPIP) et al (2010) Recommendations for bone and joint prosthetic device infections in clinical practice (prosthesis, implants, osteosynthesis). Med Mal Infect 40:185–211

    Google Scholar 

  • Stoodley P, Conti SF, Demeo PJ et al (2011) Characterization of a mixed MRSA/MRSE biofilm in an explanted total ankle arthroplasty. FEMS Immunol Med Microbiol 62:66–74

    Article  CAS  PubMed  Google Scholar 

  • Tande AJ, Patel R (2014) Prosthetic joint infection. Clin Microbiol Rev 27:302–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Tande AJ, Osmon DR, Greenwood-Quaintance KE et al (2014) Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci. MBio 5:e01910–e01914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tande AJ, Palraj BR, Osmon DR et al (2016) Clinical presentation, risk factors, and outcomes of hematogenous prosthetic joint infection in patients with Staphylococcus aureus bacteremia. Am J Med 129:221

    Article  PubMed  Google Scholar 

  • Tetreault MW, Wetters NG, Aggarwal VK et al (2013) Should draining wounds and sinuses associated with hip and knee arthroplasties be cultured? J Arthroplasty 28(8 Suppl):133–136

    Article  PubMed  Google Scholar 

  • Tornero E, Garcia-Oltra E, Garcia-Ramiro S et al (2012) Prosthetic joint infections due to Staphylococcus aureus and coagulase negative staphylococci. Int J Artif Organs 35:884–892

    PubMed  Google Scholar 

  • Tornero E, Senneville E, Euba G et al (2014) Characteristics of prosthetic joint infections due to Enterococcus sp. and predictors of failure: a multi-national study. Clin Microbiol Infect 20:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Trampuz A, Piper KE, Hanssen AD et al (2006) Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination. J Clin Microbiol 44:628–631

    Article  PubMed  PubMed Central  Google Scholar 

  • Trampuz A, Piper KE, Jacobson MJ et al (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357:654–663

    Article  CAS  PubMed  Google Scholar 

  • Tunney MM, Patrick S, Gorman SP et al (1998) Improved detection of infection in hip replacements. A currently underestimated problem. J Bone Joint Surg (Br) 80:568–572

    Article  CAS  Google Scholar 

  • Vasoo S, Cunningham SA, Greenwood-Quaintance KE et al (2015) Evaluation of the film-array blood culture ID panel on biofilms dislodged from explanted arthroplasties for prosthetic joint infection diagnosis. J Clin Microbiol 53:2790–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JL, Norman P, Stockley I (2004) The value of hip aspiration versus tissue biopsy in diagnosing infection before exchange hip arthroplasty surgery. J Arthroplasty 19:582–586

    Article  PubMed  Google Scholar 

  • Yee DK, Chiu KY, Yan CH et al (2013) Review article: joint aspiration for diagnosis of periprosthetic infection. J Orthop Surg 21:236–240

    Article  Google Scholar 

  • Zegaer BH, Ioannidis A, Babis GC et al (2014) Detection of bacteria bearing resistant biofilm forms, by using the universal and specific PCR is still unhelpful in the diagnosis of periprosthetic joint infections. Front Med 1:30

    Article  Google Scholar 

  • Zhai Z, Li H, Qin A, Liu G et al (2014) Meta-analysis of sonication fluid samples from prosthetic components for diagnosis of infection after total joint arthroplasty. J Clin Microbiol 52:1730–1736

    Article  PubMed  PubMed Central  Google Scholar 

  • Zmistowski B, Fedorka CJ, Sheehan E et al (2011) Prosthetic joint infection caused by gram-negative organisms. J Arthroplasty 26(6 Suppl):104–108

    Article  PubMed  Google Scholar 

  • Zmistowski B, Della Valle C, Bauer TW et al (2014a) Diagnosis of periprosthetic joint infection. J Arthroplasty 29:77–83

    Article  PubMed  Google Scholar 

  • Zmistowski B, Della Valle C, Bauer TW et al (2014b) Diagnosis of periprosthetic joint infection. J Orthop Res 32(Suppl 1):S98–S107

    PubMed  Google Scholar 

  • Zywiel MG, Stroh DA, Johnson AJ et al (2011) Gram stains have limited application in the diagnosis of infected total knee arthroplasty. Int J Infect Dis 15:e702–e705

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Drago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Drago, L., De Vecchi, E. (2016). Microbiological Diagnosis of Implant-Related Infections: Scientific Evidence and Cost/Benefit Analysis of Routine Antibiofilm Processing. In: Drago, L. (eds) A Modern Approach to Biofilm-Related Orthopaedic Implant Infections. Advances in Experimental Medicine and Biology(), vol 971. Springer, Cham. https://doi.org/10.1007/5584_2016_154

Download citation

Publish with us

Policies and ethics