Skip to main content

The Role of TNF in Cancer

  • Chapter
  • First Online:
Death Receptors and Cognate Ligands in Cancer

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 49))

Abstract

Tumor necrosis factor (TNF) is an extraordinarily pleiotropic cytokine with a central role in immune homeostasis, inflammation, and host defense. Dependent on the cellular context, it can induce such diverse effects as apoptosis, necrosis, angiogenesis, immune cell activation, differentiation, and cell migration. These processes are of great relevance in tumor immune surveillance, and also play crucial roles in tumor development and tumor progression. It is therefore no surprise that TNF in a context-dependent manner displays pro- and antitumoral effects. Modulation of the activity of the TNF–TNF receptor system thus offers manifold possibilities for cancer therapy. In fact, TNF in combination with melphalan is already an established treatment option in the therapy of advanced soft tissue sarcoma of the extremities and many preclinical data suggest that TNF neutralization could also be exploited to fight cancer or cancer-associated complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOM:

Azoxymethane

APC:

Antigen presenting cell

COX-2:

Cyclo-oxygenase-2

cIAP1/2:

Cellular inhibitor of apoptosis protein-1/2

DMBA:

7,12-di-methylbenz[α]-anthracene

DSS:

Dextran sulfate sodium salt

EMT:

Epithelial–mesenchymal transition

ERK:

Extracellular-regulated kinase

FADD:

Fas-associated death domain

GSK3β:

Glycogen synthase kinase

ILP:

Isolated limb perfusion

JNK:

cJun N-terminal kinase

LMCV:

Lymphocytic choriomeningitis virus

MCA:

3′-Methylcholanthrene

MCP1:

Monocyte chemoattractant protein-1

MDR2:

Multidrug resistance p-glycoprotein 2

MMP-9:

Matrix metalloprotease-9

OA:

Ocadaic acid

PDAC:

Pancreatic ductal adenocarcinoma

p38 MAPK:

p38 mitogen-activated protein (MAP) kinase

RANK:

Receptor activator of NF-kappaB

TPA:

12-0-Tetradecanoyl-phorbol-13-acetate

TRPV1:

Transient receptor potential channel vanilloid type 1

VEGFR2:

Vascular endothelial growth factor (VEGF) receptor

References

  • Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schneider-Mergener J, Krönke M (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86:937–947

    Article  CAS  PubMed  Google Scholar 

  • Arnott CH, Scott KA, Moore RJ, Hewer A, Phillips DH, Parker P, Balkwill FR, Owens DM (2002) Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway. Oncogene 21:4728–4738

    Article  CAS  PubMed  Google Scholar 

  • Arnott CH, Scott KA, Moore RJ, Robinson SC, Thompson RG, Balkwill FR (2004) Expression of both TNF-alpha receptor subtypes is essential for optimal skin tumour development Oncogene 23:1902–1910

    Article  CAS  PubMed  Google Scholar 

  • Bates RC, Mercurio AM (2003) Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14:1790–1800

    Article  CAS  PubMed  Google Scholar 

  • Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A (1985) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316:552–554

    Article  CAS  PubMed  Google Scholar 

  • Binder RL, Gallagher PM, Johnson GR, Stockman SL, Smith BJ, Sundberg JP, Conti CJ (1997) Evidence that initiated keratinocytes clonally expand into multiple existing hair follicles during papilloma histogenesis in SENCAR mouse skin. Mol Carcinog 20:151–158

    Article  CAS  PubMed  Google Scholar 

  • Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27:19–26

    Article  CAS  PubMed  Google Scholar 

  • Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling Arch Biochem Biophys 473:139–146

    Article  CAS  PubMed  Google Scholar 

  • Brown ER, Charles KA, Hoare SA, Rye RL, Jodrell DI, Aird RE, Vora R, Prabhakar U, Nakada M, Corringham RE, DeWitte M, Sturgeon C, Propper D, Balkwill FR, Smyth JF (2008) A clinical study assessing the tolerability and biological effects of infliximab, a TNF-alpha inhibitor, in patients with advanced cancer. Ann Oncol 19:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N, Elford AR, Mak TW, Ohashi PS (2007) TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest 117:3833–3845

    CAS  PubMed  Google Scholar 

  • Chan FK, Lenardo MJ (2000) A crucial role for p80 TNF-R2 in amplifying p60 TNF-R1 apoptosis signals in T lymphocytes. Eur J Immunol 30:652–660

    Article  CAS  PubMed  Google Scholar 

  • Choo MK, Sakurai H, Koizumi K, Saiki I (2005) Stimulation of cultured colon 26 cells with TNF-alpha promotes lung metastasis through the extracellular signal-regulated kinase pathway. Cancer Lett 230:47–56

    Article  CAS  PubMed  Google Scholar 

  • Chuang MJ, Sun KH, Tang SJ, Deng MW, Wu YH, Sung JS, Cha TL, Sun GH (2008) Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci 99:905–913

    Article  CAS  PubMed  Google Scholar 

  • Constantin CE, Mair N, Sailer CA, Andratsch M, Xu ZZ, Blumer MJ, Scherbakov N, Davis JB, Bluethmann H, Ji RR, Kress M (2008) Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model J Neurosci 28:5072–5081

    Article  CAS  PubMed  Google Scholar 

  • Correa P (2003) Helicobacter pylori infection and gastric cancer. Cancer Epidemiol Biomarkers Prev 12:238s–241s

    PubMed  Google Scholar 

  • Cubillos S, Scallon B, Feldmann M, Taylor P (1997) Effect of blocking TNF on IL-6 levels and metastasis in a B16-BL6 melanoma/mouse model. Anticancer Res 17:2207–2211

    CAS  PubMed  Google Scholar 

  • Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S, Kettler B, von Forstner C, Kneitz C, Tepel J, Adam D, Wajant H, Kalthoff H, Trauzold A (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res Mar 68:1443–1450

    Article  CAS  Google Scholar 

  • Fotin-Mleczek M, Henkler F, Samel D, Reichwein M, Hausser A, Parmryd I, Scheurich P, Schmid JA, Wajant H (2002) Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci 115:2757–2770

    CAS  PubMed  Google Scholar 

  • Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S,Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793–802

    Article  CAS  PubMed  Google Scholar 

  • Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer Cell 118:285–296

    Article  CAS  PubMed  Google Scholar 

  • Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366

    Article  CAS  PubMed  Google Scholar 

  • Harrison ML, Obermueller E, Maisey NR, Hoare S, Edmonds K, Li NF, Chao D, Hall K, Lee C, Timotheadou E, Charles K, Ahern R, King DM, Eisen T, Corringham R, DeWitte M, Balkwill F, Gore M (2007) Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol 25:4542–4549

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, Park SH, Wang XJ, Kim SJ (2007) Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 8:504–513

    Article  CAS  PubMed  Google Scholar 

  • van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11:397–408

    Article  CAS  PubMed  Google Scholar 

  • Knight B, Yeoh GC, Husk KL, Ly T, Abraham LJ, Yu C, Rhim JA, Fausto N (2000) Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J Exp Med 192:1809–1818

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–286

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang Y, Ashwell JD (2002) TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416:345–347

    Article  PubMed  Google Scholar 

  • Lin Y, Devin A, Rodriguez Y, Liu ZG (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13:2514–2526

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, Tran JH, Nedospasov SA, Liu ZG (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279:10822–10828

    Article  CAS  PubMed  Google Scholar 

  • Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305

    Article  CAS  PubMed  Google Scholar 

  • Monk JP, Phillips G, Waite R, Kuhn J, Schaaf LJ, Otterson GA, Guttridge D, Rhoades C, Shah M, Criswell T, Caligiuri MA, Villalona-Calero MA (2006) Assessment of tumor necrosis factor alpha blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J Clin Oncol 24:1852–1859

    Article  CAS  PubMed  Google Scholar 

  • Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F (1999) Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 5:828–831

    Article  CAS  PubMed  Google Scholar 

  • Muppidi JR, Tschopp J, Siegel RM (2004) Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21:461–465

    Article  CAS  PubMed  Google Scholar 

  • Müller-Hermelink N, Braumüller H, Pichler B, Wieder T, Mailhammer R, Schaak K, Ghoreschi K, Yazdi A, Haubner R, Sander CA, Mocikat R, Schwaiger M, Förster I, Huss R, Weber WA, Kneilling M, Röcken M (2008) TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13:507–518

    Article  PubMed  Google Scholar 

  • Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S, Hirao A, Saya H, Taketo MM, Oshima M (2008) Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J 27:1671–1681

    Article  CAS  PubMed  Google Scholar 

  • Orosz P, Echtenacher B, Falk W, Rüschoff J, Weber D, Männel DN (1993) Enhancement of experimental metastasis by tumor necrosis factor. J Exp Med 177:1391–1398

    Article  CAS  PubMed  Google Scholar 

  • Ouyang W, Hu Y, Li J, Ding M, Lu Y, Zhang D, Yan Y, Song L, Qu Q, Desai D, Amin S, Huang C (2007) Direct evidence for the critical role of NFAT3 in benzo[a]pyrene diol-epoxide-induced cell transformation through mediation of inflammatory cytokine TNF induction in mouse epidermal Cl41 cells. Carcinogenesis 28:2218–2226

    Article  CAS  PubMed  Google Scholar 

  • Pan S, An P, Zhang R, He X, Yin G, Min W (2002) Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Mol Cell Biol 22:7512–7523

    Article  CAS  PubMed  Google Scholar 

  • Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62

    Article  CAS  PubMed  Google Scholar 

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466

    Article  CAS  PubMed  Google Scholar 

  • Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N (2008). Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570

    CAS  PubMed  Google Scholar 

  • Qin Z, Krüger-Krasagakes S, Kunzendorf U, Hock H, Diamantstein T, Blankenstein T (1993) Expression of tumor necrosis factor by different tumor cell lines results either in tumor suppression or augmented metastasis. J Exp Med 178:355–360

    Article  CAS  PubMed  Google Scholar 

  • Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–692

    Article  CAS  PubMed  Google Scholar 

  • Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83:1243–1252

    Article  CAS  PubMed  Google Scholar 

  • Schütze S, Tchikov V, Schneider-Brachert W (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 9(8):655–662

    Article  PubMed  Google Scholar 

  • Schwandner R, Wiegmann K, Bernardo K, Kreder D, Kronke M (1998) TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biol Chem 273:5916–5922

    Article  CAS  PubMed  Google Scholar 

  • Scott KA, Arnott CH, Robinson SC, Moore RJ, Thompson RG, Marshall JF, Balkwill FR (2004) TNF-alpha regulates epithelial expression of MMP-9 and integrin alphavbeta6 during tumour promotion. A role for TNF-alpha in keratinocyte migration? Oncogene 23:6954–6966

    Article  CAS  PubMed  Google Scholar 

  • Suganuma M, Okabe S, Marino MW, Sakai A, Sueoka E, Fujiki H (1999) Essential role of tumor necrosis factor alpha (TNF-alpha) in tumor promotion as revealed by TNF-alpha-deficient mice. Cancer Res 59:4516–4518

    CAS  PubMed  Google Scholar 

  • Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ (2007) Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 105:652–656

    Article  Google Scholar 

  • Tookman AJ, Jones CL, Dewitte M, Lodge PJ (2008) Fatigue in patients with advanced cancer: a pilot study of an intervention with infliximab. Support Care Cancer 16(10):1131–1140

    Article  CAS  PubMed  Google Scholar 

  • ame>Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    Article  Google Scholar 

  • ame>Wang AM, Creasey AA, Ladner MB, Lin LS, Strickler J, Van Arsdell JN, Yamamoto R, Mark DF (1985) Molecular cloning of the complementary DNA for human tumor necrosis factor. Science 228:149–154

    Article  Google Scholar 

  • Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683

    Article  CAS  PubMed  Google Scholar 

  • Waterston AM, Salway F, Andreakos E, Butler DM, Feldmann M, Coombes RC (2004) TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model. Br J Cancer 90:1279–1284

    Article  CAS  PubMed  Google Scholar 

  • Weiss T, Grell M, Hessabi B, Bourteele S, Müller G, Scheurich P, Wajant H (1997) Enhancement of TNF receptor p60-mediated cytotoxicity by TNF receptor p80: requirement of the TNF receptor-associated factor-2 binding site. J Immunol 158:2398–2404

    CAS  PubMed  Google Scholar 

  • Wiedenmann B, Malfertheiner P, Friess H, Ritch P, Arseneau J, Mantovani G, Caprioni F, Van Cutsem E, Richel D, DeWitte M, Qi M, Robinson D Jr, Zhong B, De Boer C, Lu JD, Prabhakar U, Corringham R, Von Hoff D (2008) A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J Support Oncol 6(1):18–25

    CAS  PubMed  Google Scholar 

  • Wu CJ, Conze DB, Li X, Ying SX, Hanover JA, Ashwell JD (2005) TNF-alpha induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. EMBO J 24:1886–1898

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276:563–568

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Xu Y, Ekman N, Wu Z, Wu J, Alitalo K, Min W (2003) Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway. J Biol Chem 278:51267–51276

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Wajant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wajant, H. (2009). The Role of TNF in Cancer. In: Kalthoff, H. (eds) Death Receptors and Cognate Ligands in Cancer. Results and Problems in Cell Differentiation, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2008_26

Download citation

Publish with us

Policies and ethics