Skip to main content

Phenomenological modelling : Present .... and future?

  • Session Six
  • Conference paper
  • First Online:
Whither Turbulence? Turbulence at the Crossroads

Part of the book series: Lecture Notes in Physics ((LNP,volume 357))

Abstract

The paper summarizes the present position of second-moment closure and outlines possible directions for future development. It is first argued that a simple form of second-moment treatment that has been widely used for computing industrial flows gives demonstrably superior predictive accuracy than any eddy-viscosity model. More complex schemes, now in the final phases of development, that exactly satisfy various limiting constraints, give a further marked improvement in our ability to mimic the response of turbulence to external inputs. The inclusion of such models into commercial software over the next few years is quite feasible.

The desirability of introducing a further second-rank tensor into the closure is considered; the conclusion reached is that, for most applications, the likely benefits would not justify the additional effort. The split-spectrum approach may, however, be attractive for certain flows with unusual spectral distributions of energy. The introduction of a second scale-related equation is arguably a more sensible approach since the extra computational cost is small while the added flexibility could bring significant benefits in modelling turbulence far from equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

aij:

anisotropic Reynolds stress \(\left( {\overline {u_i u_j } - \tfrac{1}{3}\delta _{ij} \overline {u_k u_k } } \right)/k\)

A:

stress invariant quantifying the proximity of the stresses to the two-component limit, \(1 - \tfrac{9}{8}\left( {A_2 - A_3 } \right)\)

A2 :

second invariant aij aji

A3 :

third invariant aij ajk aki

c's:

denote coefficients in turbulence model

Cij, C :

convective transport of \(\overline {u_i u_j } ,\overline {u_i \theta }\)

d:

small pipe diameter

dijk :

diffusion of Reynolds stress

References

  1. Rotta, J. Z. Phys. 129, 547–573, 1951.

    Article  Google Scholar 

  2. Rotta, J. Z. Phys. 131, 51–77, 1951.

    Article  Google Scholar 

  3. Davidov, B.I. Dokl. Akad. Nauk. SSSR 136, 47, 1961.

    Google Scholar 

  4. Donaldson, C. du P. “A computer study of an analytical model of boundary layer transition,” AIAA J. 7, 271–278, 1969.

    Google Scholar 

  5. Daly, B.J. and Harlow, F.H. Phys. Fluids 13, 2634, 1970.

    Article  Google Scholar 

  6. Hanjalić, K. and Launder, B.E. J. Fluid Mech. 52, 609, 1972.

    Google Scholar 

  7. Rodi, W. “The prediction of free turbulent shear flows by use of a 2-equation model of turbulence,” PhD Thesis, Faculty of Engineering, University of London, 1972.

    Google Scholar 

  8. Launder, B.E., Morse, A.P., Rodi, W. and Spalding, D.B. Proc. 1972 NASA Conf. on Free Turbulent Shear Flows, Vol. 1, pp. 361–526, NASA SP-321, 1973.

    Google Scholar 

  9. Launder, B.E., Reece, G.J. and Rodi, W. J. Fluid Mech. 68, 537, 1975.

    Google Scholar 

  10. Launder, B.E. and Spalding, D.B. Comp. Meth Appl. Mech. and Engrg. 3, 269, 1974.

    Article  Google Scholar 

  11. Launder, B.E. and Ying, W.M. Proc. IMechE (London), 187, 455–461, 1973.

    Google Scholar 

  12. Naot, D., Shavit, A. and Wolfshtein, M. Wärmeundstoffubertragung 7, 151, 1974.

    Google Scholar 

  13. Pope, S.B. and Whitelaw, J.H. J. Fluid Mech. 73, 9–32, 1976.

    Google Scholar 

  14. Wyngaard, J. and Coté, O. Boundary-Layer Met. 7, 289–308, 1974.

    Article  Google Scholar 

  15. Launder, B.E. J. Fluid Mech. 67, 569–581, 1975.

    Google Scholar 

  16. Zeman, O. and Lumley, J.L. “Buoyancy effects in turbulent boundary layers: A second order closure study” in Turbulent Shear Flows-1 (ed. F. Durst et al), 295–306, Springer, Heidelberg, 1979.

    Google Scholar 

  17. Irwin, H.P.A. and Arnot-Smith, P. Phys. Fluids 17, 624–630, 1975.

    Article  Google Scholar 

  18. Launder, B.E. and Morse, A.P. “Numerical prediction of axisymmetric free shear flows with a Reynolds stress closure” in Turbulent Shear Flows-1 (ed. F. Durst et al), 274–295, Springer, Heidelberg, 1979.

    Google Scholar 

  19. Kline, S.J., Cantwell, B. and Lilley, G.K. (Editors), Proc. 1980-81 AFOSR-HTTM-Stanford Conf. on Complex Turbulent Flows, Stanford, 1981/82.

    Google Scholar 

  20. Leonard, B.P. Comp. Meth. Appl. Eng. 12, 59, 1979.

    Article  Google Scholar 

  21. Lumley, J.L. Advances in Appl. Mech. 18, 123–175, 1978.

    Google Scholar 

  22. Naot, D., Shavit, A. and Wolfshtein, M. Israel J. Tech. 8, 259–269, 1970.

    Google Scholar 

  23. Launder, B.E. J. Fluid Mech. 67, 569–581, 1975.

    Google Scholar 

  24. Shir, C.C. J. Atmos. Sci. 30, 1327–1339, 1973.

    Article  Google Scholar 

  25. Gibson, M.M. and Launder, B.E. J. Fluid Mech. 86, 491–511, 1978.

    Google Scholar 

  26. Monin, A.S. Isv. Atmos. Ocean. Phys. 1, 85–94, 1965.

    Google Scholar 

  27. Owen, R.G. “An analytical turbulent transport model applied to non-isothermal fully-developed duct flows,” PhD Thesis, Dept. Mech. Engrg., The Pennsylvania State University, 1973.

    Google Scholar 

  28. Gibson, M.M., Jones, W.P. and Younis, B.A. Phys. Fluids 24, 386–395, 1981.

    Article  Google Scholar 

  29. Nemouchi, Z. “The computation of turbulent thin shear flows associated with flow around multi-element aerofoils,” PhD Thesis, Faculty of Technology, University of Manchester, 1988.

    Google Scholar 

  30. Gibson, M.M. and Rodi, W. J. Fluid Mech. 103, 161–182, 1981.

    Google Scholar 

  31. Huang, G.P.G. “The computation of elliptic turbulent flows with second-moment closure models,” PhD Thesis, Faculty of Technology, University of Manchester, 1986.

    Google Scholar 

  32. Gibson, M.M. and Launder, B.E. ASME J. Heat Transfer 98C, 81–87, 1976.

    Google Scholar 

  33. Hossain, M.S. and Rodi, W. “Influence of buoyancy on the turbulent intensities in horizontal and vertical jets” in Heat Transfer and Turbulent Buoyant Convection (ed. D.B. Spalding and N. Afghan), Hemisphere, New York 1977.

    Google Scholar 

  34. McGuirk, J. and Papadimitriou, C. “Buoyant surface layer under fully entraining and hydraulic jump conditions,” Proc. 5th Symp. on Turbulent Shear Flows, 22.33-22.41, Comell, 1985.

    Google Scholar 

  35. To, W.M. and Humphrey, J.A.C. Int. J. Heat Mass Transfer 29, 593, 1986.

    Article  Google Scholar 

  36. Humphrey, J.A.C. and To, W.M. “Numerical prediction of turbulent free convection along a heated vertical flat plate,” Proc. 5th Symp. on Turbulent Shear Flows, 22.19-22.26, Comell University, 1985.

    Google Scholar 

  37. Jones, W.P. and Manners, A. “The calculation of the flow through a two-dimensional faired diffuser” in Turbulent Shear Flows-6 (ed. J.C. Andrd et al), 18–31, Springer, Heidelberg, 1989.

    Google Scholar 

  38. Launder, B.E., Leschziner, M.A. and Sindir, M. “The UMIST-UCD computations: Comparison of computations with experiment,” Proc. 1980-81 AFOSR-HTTM-Stanford Conf. on Complex Turbulent Flows (ed. S.J. Kline et al), Vol. III, 1390–1407, Stanford, 1982.

    Google Scholar 

  39. Yap, C. “Turbulent heat and momentum transfer in recirculating and impinging flows,” PhD Thesis, Faculty of Technology, University of Manchester, 1987.

    Google Scholar 

  40. Leschziner, M.A., Kadja, M. and Lea, C.K. “A combined computational and experimental study of a separated flow in an expanding annular passage,” Proc. 3rd IAHR Symp. on Refined Flow Modelling and Turbulence Measurements, 83–91, Tokyo, 1983.

    Google Scholar 

  41. Fu, S., Launder, B.E. and Leschziner, M.A. “Modelling strongly swirling recirculating jet flow with Reynolds-stress transport closures,” Proc. 6th Symp. on Turbulent Shear Flows, Paper 17.6, Toulouse, 1987.

    Google Scholar 

  42. Hogg, S.I. and Leschziner, M.A.“Computation of highly swirling confined flow with a Reynolds stress closure.” To appear in AIAA J., 1989.

    Google Scholar 

  43. Weber, R., Boysan, F., Swithenbank, J. and Roberts, P.A. Proc. 21st Symp. (International) on Combustion, The Combustion Institute, 1435–1443, 1986.

    Google Scholar 

  44. Hogg, S.I. and Leschziner, M.A. To appear in Int. J. Heat and Fluid Flow, 1989.

    Google Scholar 

  45. Benay, R., Cöet, M-C and Delery, J. “A study of turbulence modelling in transonic shock-wave boundary layer interactions” in Turbulent Shear Flows-6 (ed. J.C. André et al), 194–214, Springer, Heidelberg, 1989.

    Google Scholar 

  46. Baughn, J.W., Hoffman, M., Launder, B.E. and Samaraweera, D.S.A. “Three-dimensional turbulent heat transport in pipe flow: experiment and model validation,” ASME Paper 78-WA-HT-15, ASNIE Winter Annual Meeting, San Francisco, 1978.

    Google Scholar 

  47. Demuren, O. and Rodi, W. J. Fluid Mech. 140, 189, 1984.

    Google Scholar 

  48. Iacovides, H. and Launder, B.E. “ASM predictions of turbulent flow and heat transfer in coils and U-bends,” Proc. 4th Int. Conf. on Numerical Methods in Laminar and Turbulent Flows, 1023–1044, Pineridge Press, Swansea, 1985.

    Google Scholar 

  49. Choi, Y.D., Iacovides, H. and Launder, B.E. ASME J. Fluids Eng. 111, 1989.

    Google Scholar 

  50. Stevens, S.J. and Fry, P. J. Aircraft 10, 73, 1973.

    Google Scholar 

  51. Johnston, J.P., Halleen, R.M. and Lezius, D.K. J. Fluid Mech. 56, 533, 1972.

    Google Scholar 

  52. Kim, J. Proc. 4th Symp. on Turbulent Shear Flows, Karlsruhe, p. 6.14, 1983.

    Google Scholar 

  53. Launder, B.E., Tselepidakis, D.P. and Younis, B.A. J. Fluid Mech. 183, 63, 1987.

    Google Scholar 

  54. So, R.M.C., Ahmed, S.A. and Mongia, H.C. Exp. in Fluids 3, 221–230, 1985.

    Google Scholar 

  55. Chang, S.M., Humphrey, J.A.C. and Modavi, A. Physico-Chemical Hydrodynamics 4, 243, 1983.

    Google Scholar 

  56. Chang, S.M., Humphrey, J.A.C., Johnson, R.W. and Launder, B.E. Proc. 4th Symp. on Turbulent Shear Flows, pp. 6.20–6.25, Karlsruhe, 1983.

    Google Scholar 

  57. Johnson, R.W. “Turbulent convecting flow in a square duct with a 180° bend: an experimental and numerical study,” PhD Thesis, Faculty of Technology, University of Manchester, 1984.

    Google Scholar 

  58. Launder, B.E. “The prediction of force field effects on turbulent shear flows via second-moment closure,” Invited Paper, 2nd European Turbulence Conf., Berlin, 1988.

    Google Scholar 

  59. Launder, B.E. “Turbulence modelling of three-dimensional shear flows,” Invited Paper, Proc. AGARD Conf. on 3-Dimensional Turbulent Shear Flows, Cesme, Turkey, 1988.

    Google Scholar 

  60. Chou, P-Y. Quart. App. Math. 3, 38, 1945.

    Google Scholar 

  61. Lumley, J.L. and Newman, G.R. J. Fluid Mech. 82, 161, 1977.

    Google Scholar 

  62. Reynolds, W.C. in ‘Turbulence Models and Their Applications,” Eyrolles, Paris, 1984.

    Google Scholar 

  63. Lee, M. and Reynolds, W.C. “On the structure of homogeneous turbulence,” Proc. 5th Symp. on Turbulent Shear Flows, pp. 17.7–17.12, Cornell, 1985.

    Google Scholar 

  64. Lee, M. and Reynolds, W.C. “Structure and modeling of homogeneous turbulence in strain and relaxation processes.” Submitted to J. Fluid Mech., 1987.

    Google Scholar 

  65. Weinstock, J. and Burk, S. “Theoretical pressure-strain term: resistance to large anisotropies of stress and dissipation,” Proc. 5th Symp. on Turbulent Shear Flows, pp. 12.13–12.18, Cornell, 1985.

    Google Scholar 

  66. Weinstock, J. and Burk, S. J. Fluid Mech. 154, 429–443, 1985.

    Google Scholar 

  67. Jones, W.P. and Musonge, P. “Modelling of scalar transport in homogeneous turbulent flows,” Proc. 4th Symp. on Turbulent Shear Flows, pp. 17.18–17.24, Karlsruhe, 1983.

    Google Scholar 

  68. Tavoularis, S. and Corrsin, S.C. J. Fluid Mech. 104, 311, 1981.

    Google Scholar 

  69. Dakos, T. and Gibson, M.M. “On modelling the pressure terms of the scalar flux equations,” Proc. 5th Symp. on Turbulent Shear Flows, pp. 12.1–12.6, Cornell, 1985.

    Google Scholar 

  70. Gibson, M.M., Jones, W.P. and Kanellopoulos, V.E. “Turbulent temperature mixing layer: measurement and modelling,” Proc. 6th Symp. on Turbulent Shear Flows, Paper 9-5, 1987.

    Google Scholar 

  71. Craft, T., Fu, S., Launder, B.E. and Tselepidakis, D.P. “Developments in modelling the turbulent second-moment pressure correlations,” UMIST Mech. Eng. Dept. Report TFD/89/1, 1989. (Submitted for publication).

    Google Scholar 

  72. Naot, D., Shavit, A. and Wolfshtein, M. Phys. Fluids 16, 738, 1973.

    Article  Google Scholar 

  73. Le Penven, L. and Gence, J-N. C.R. Acad. Sci. Paris 297, Ser. II, 309–383, 1983.

    Google Scholar 

  74. Lecointe, Y., Piquet, J. and Visonneau, M. “Rapid-term modelling of Reynolds stress closures with the help of rapid-distortion theory,” proc. 5th Symp. on Turbulent Shear Flows, pp. 12.7–12.12, Cornell, 1985.

    Google Scholar 

  75. Shih, T-H and Lumley, J.L. “Modeling of pressure correlation terms in Reynolds stress and scalar flux equations,” Report FDA-85-3, Sibley School of Mech. Aero. Eng., Cornell University, 1985.

    Google Scholar 

  76. Shih, T-H, Lumley, J.L. and Chen, J-Y. “Second-order modeling of a passive scalar in a turbulent shear flow,” Report FDA-85-15, Sibley School of Mech. Aero. Eng., Cornell University, 1985.

    Google Scholar 

  77. Fu, S., Launder, BE and Tselepidakis, D.P. “Accommodating the effects of high strain rates in modelling the pressure-strain correlation,” UMIST Mech. Eng. Dept. Report TFD/87/5, 1987.

    Google Scholar 

  78. Fu, S. “Computational modelling of turbulent swirling flows with second-moment closures,” PhD Thesis, Faculty of Technology, University of Manchester, 1988.

    Google Scholar 

  79. Ristorcelli, J.R. “A realizable rapid pressure model satisfying two-dimensional frame indifference and valid for three-dimensional three-component turbulence,” Report FDA-87-19, Sibley School of Mech. Aero. Eng., Cornell University, 1987.

    Google Scholar 

  80. Reynolds, W.C. “Fundamentals of turbulence for turbulence modeling and simulation,” Notes for Class ME261B Turbulence, Stanford University, 1989.

    Google Scholar 

  81. Champagne, F., Harris, V.G. and Corrsin, S.C. J. Fluid Mech. 41, 81, 1970.

    Google Scholar 

  82. Harris, V.G., Graham, J.A. and Corrsin, S.C. J. Fluid Mech. 81, 657, 1977.

    Google Scholar 

  83. Leslie, D.C. J. Fluid Mech. 98, 435–448, 1980.

    Google Scholar 

  84. Lee, M.J., Kim, J. and Moin, P. “Turbulence structure at high shear rate,” Paper 22-6, Proc. 6th Symp. on Turbulent Shear Flows, Toulouse, 1987.

    Google Scholar 

  85. Launder, B.E. “Turbulence models and their experimental verification; II — Scalar property transport by turbulence,” Mech. Eng. Dept. Report HTS/73/26, Imperial College, London, 1973.

    Google Scholar 

  86. Lumley, J.L. Lecture Series No. 76, Von Karman Inst., Rhode-St-Genese, Belgium, 1975.

    Google Scholar 

  87. Launder, B.E. Lecture Series No. 76, Von Karman Inst., Rhode-St-Genese, Belgium, 1975.

    Google Scholar 

  88. Tavoularis, S. and Cousin, S.C. Int. J. Heat Mass Trans. 28, 265, 1985.

    Article  Google Scholar 

  89. Speziale, C.G. Geophys. Astrophys. Fluid Dynamics 23, 69–84, 1983.

    Google Scholar 

  90. Ettestad, D. and Lumley, J.L. “Parameterization of turbulent transport in swirling flows-I. Theoretical considerations” in Turbulent Shear Flows-4 (ed. L.J.S. Bradbury et al), pp. 87–101, Springer, Heidelberg, 1985.

    Google Scholar 

  91. Dekeyser, I. and Launder, B.E. “A comparison of triple-moment temperature-velocity correlations in the asymmetric heated jet with alternative closure models” in Turbulent Shear Flows-4 (ed. L.J.S. Bradbury et al), pp. 102–117, Springer, Heidelberg, 1985.

    Google Scholar 

  92. Gilbert, B.L. “Detailed turbulence measurements in a two-dimensional upwash,” AIAA Paper 83-1678, 1983.

    Google Scholar 

  93. André, J.C., de Moor, G., Lacarrère, P., Therry, G. and du Vachat, R. “The clipping approximation and inhomogeneous turbulence simulations” in Turbulent Shear Flows-1 (ed. F. Durst et al), pp. 307–318, Springer, Heidelberg, 1979.

    Google Scholar 

  94. Pope, S.B. AIAA J. 16, 279–281, 1978.

    Google Scholar 

  95. Hanjalić, K. and Launder, B.E. J. Fluids Eng. 102, 34–40, 1980.

    Google Scholar 

  96. Bardina, J., Feraiger, J. and Reynolds, W.C. “Improved turbulence models based on large-eddy simulation of homogeneous, incompressible, turbulent flows,” Mech. Eng. Dept. Report TF-19, Stanford University, 1983.

    Google Scholar 

  97. Aupoix, B., Cousteix, J. and Liandrat, J. “Effects of rotation on isotropic turbulence,” Proc. 4th Symp. on Turbulent Shear Flows, pp. 9.7–9.12, Karlsruhe, 1983.

    Google Scholar 

  98. Lumley, J.L. and Khajeh-Nouri, B.J. “Computational modeling of turbulent transport” (Proc. 2nd IUGG-IUTAM Symp. on Atmospheric Diffusion in Environmental Pollution), Advances in Geophysics 18A, 169, 1974.

    Google Scholar 

  99. Morse, A.P. “Axisymmetric free shear flows with and without swirl,” PhD Thesis, Faculty of Engineering, University of London, 1980.

    Google Scholar 

  100. Ince, N.Z. and Launder, B.E.“The prediction of buoyancy-modified turbulence with a new second-moment closure.” Paper accepted for 7th Symp. on Turbulent Shear Flows, Stanford, 1989.

    Google Scholar 

  101. Rodi, W. Proc. 2nd Symp. on Turbulent Shear Flows, pp. 10.37–10.42, London, 1979.

    Google Scholar 

  102. Wygnanski, I., Champagne, F. and Marasli, B. J. Fluid Mech. 168, 31, 1986.

    Google Scholar 

  103. Rodi, W. and Scheuerer, G. Proc. 4th Symp. on Turbulent Shear Flows, pp. 2.8–2.14, Karlsruhe, 1983.

    Google Scholar 

  104. Launder, B.E. ASME J. Heat Trans. 110, 1112–1128, 1988.

    Google Scholar 

  105. Ince, N.Z. Personal communication, 1988.

    Google Scholar 

  106. Shih, T-H and Lumley, J.L. Phys. Fluids 29, 971–975, 1986.

    Article  Google Scholar 

  107. Tselepidakis, D.P. Personal communication, 1988.

    Google Scholar 

  108. Kim, J., Moin, P. and Moser, R.D. J. Fluid Mech. 177, 133–166, 1987.

    Google Scholar 

  109. Moser, R.D. and Moin, P. “Direct numerical simulation of curved channel flow,” NASA Report TM 85974, 1984.

    Google Scholar 

  110. Spalart, P. J. Fluid Mech. 172, 307, 1986.

    Google Scholar 

  111. Prud'homme, M. and Elghobashi, S. “Prediction of wall-bounded turbulent flows with an improved version of a Reynolds stress model,” Proc. 4th Symp. on Turbulent Shear Flows, pp. 1.7–1.12, Karlsruhe, 1983.

    Google Scholar 

  112. Shima, N. J. Fluids Eng. 10, 38–44, 1988.

    Google Scholar 

  113. Launder, B.E. and Shima, N.“A second-moment-closure study for the near-wall sublayer: development and application.” To appear in AIAA J., 1989.

    Google Scholar 

  114. Lai, Y.G. and So, R.M.C.“On near-wall turbulent flow modelling.” Submitted for publication.

    Google Scholar 

  115. Launder, B.E. and Tselepidakis, D.P. “Contribution to the modelling of sublayer turbulent transport,” Proc. Zoran Zarić Memorial Conf. on Wall Turbulence, Dubrovnik, 1988 (to be published by Hemisphere).

    Google Scholar 

  116. Simpson, R.L. and Wallace, D.B. “Laminarescent turbulent boundary layers: experiments on sink flows,” Project SQUID, Tech. Report. SMU-1-PU, 1985.

    Google Scholar 

  117. Launder, B.E. and Reynolds, W.C. Phys. Fluids 26, 1157–1158, 1983.

    Article  Google Scholar 

  118. Kebede, W., Launder, B.E. and Younis, B.A. “Large-amplitude period pipe flow: a second-moment-closure study,” Proc. 5th Symp. on Turbulent Shear Flows, pp. 16.23–16.28, Cornell, 1985.

    Google Scholar 

  119. Gerz, T., Schumann, U. and Elghobashi, S.E. To appear in J. Fluid Mech., 1989.

    Google Scholar 

  120. Launder, B.E. Chapter 6: “Heat and Mass Transport” in Turbulence (ed. P. Bradshaw), Springer, Heidelberg, 1976.

    Google Scholar 

  121. Nemouchi, Z. Personal communication, 1988.

    Google Scholar 

  122. Rebollo, R.M.“Analytical and experimental investigation of a turbulent mixing layer of different gases in a pressure gradient,” PhD Thesis, Cal. Inst. Tech, 1973.

    Google Scholar 

  123. Shih, T-H, Lumley, J.L. and Janicka, J. J. Fluid Mech. 180, 93–116, 1987.

    Google Scholar 

  124. Mansour, N.N., Kim, J. and Moin, P. J. Fluid Mech. 194, 15–44, 1988.

    Google Scholar 

  125. Leschziner, M.A. “Modelling turbulent recirculating flows by finite-volume methods,” Invited Paper, 3rd Int. Symp. on Refined Flow Modelling and Turbulence Measurement (ed. Y. Iwasa et al), IAHR, 1988.

    Google Scholar 

  126. Kim, J. and Moin, P. “Transport of passive scalars in a turbulent channel flow,” Proc. 6th Symp. on Turbulent Shear Flows, Paper 5.2, Toulouse, 1987.

    Google Scholar 

  127. ElBaz, A. Personal communication, 1989.

    Google Scholar 

  128. Bonnet, J-P. Summary Report of Computor Group 174, Proc. 1980/81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows (ed. S.J. Kline et al), Vol. III, pp. 1407–1410, Stanford, 1982.

    Google Scholar 

  129. Lin, A. and Wolfshtein, M. “Theoretical study of the Reynolds stress equations” in Turbulent Shear Flows-1 (ed. F. Durst et al), 327–343, Springer, Heidelberg, 1979.

    Google Scholar 

  130. Hanjalić, K., Launder, B.E. and Schiestel, R. “Multiple-time-scale concepts in turbulent transport modelling in Turbulent Shear Flows-2 (ed. L.J.S. Bradbury et al), 36–49, Springer, Heidelberg, 1980.

    Google Scholar 

  131. Cler, A. Thèse Docteur Ingénieur, Ecole Nat. Sup. Aero. Espace, Toulouse, 1982.

    Google Scholar 

  132. Schiestel, R. Jo. de Méc. Th. et Appl. 2, 417–449, 1983.

    Google Scholar 

  133. Schiestel, R. Phys. Fluids 30, 722–731, 1987.

    Article  Google Scholar 

  134. Donaldson, C. du P. and Sandri, G.“On the inclusion of eddy structure in second order closure models of turbulent flow,” AGARD Report 1982.

    Google Scholar 

  135. Sandri, G. and Cerasoli, C. “Fundamental research in turbulent modelling,” Aero. Res. Assoc. of Princeton, Inc., Report 438, 1981.

    Google Scholar 

  136. Schiestel, R. “Sur un nouveau modèle de turbulence appliqué au transfert de quantité, de mouvement et de chaleur,” Thèse Docteur és Sciences, Université de Nancy, 1974.

    Google Scholar 

  137. Wu, C-T, Feraiger, J. and Chapman, D.R. Proc. 5th Symp. on Turbulent Shear Flows, pp. 17.13–17.19, Comell, 1985.

    Google Scholar 

  138. Libby, P.A. J. Fluid Mech. 68, 273, 1975.

    Google Scholar 

  139. Janicka, J. and Kollmann, W. Proc. 4th Symp. on Turbulent Shear Flows, pp. 14.13–14.17, Karlsruhe, 1983.

    Google Scholar 

  140. Pope, S.B. Prog. Energy Combustion Sci. 11, 119, 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. L. Lumley

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Launder, B.E. (1990). Phenomenological modelling : Present .... and future?. In: Lumley, J.L. (eds) Whither Turbulence? Turbulence at the Crossroads. Lecture Notes in Physics, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52535-1_62

Download citation

  • DOI: https://doi.org/10.1007/3-540-52535-1_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52535-6

  • Online ISBN: 978-3-540-47032-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics