Skip to main content

Computing with Real Numbers

II. A Domain Framework for Computational Geometry

I. The LFT Approach to Real Number Computation

  • Conference paper
  • First Online:
Applied Semantics (APPSEM 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2395))

Included in the following conference series:

Abstract

We introduce, in Part I, a number representation suitable for exact real number computation, consisting of an exponent and a mantissa, which is an infinite stream of signed digits, based on the interval [−1,1]. Numerical operations are implemented in terms of linear fractional transformations (LFT’s). We derive lower and upper bounds for the number of argument digits that are needed to obtain a desired number of result digits of a computation, which imply that the complexity of LFT application is that of multiplying n-bit integers. In Part II, we present an accessible account of a domain-theoretic approach to computational geometry and solid modelling which provides a data-type for designing robust geometric algorithms, illustrated here by the convex hull algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3. Clarendon Press, 1994.

    Google Scholar 

  2. R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge Tracts in Theoretical Computer Science, 1998.

    Google Scholar 

  3. F. Avnaim, J. D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec. Evaluation of a new method to compute signs of determinants. In Proc. Eleventh ACM Symposium on Computational Geometry, June 1995.

    Google Scholar 

  4. M. Benouamer, D. Michelucci, and B. Peroche. Error-free boundary evaluation using lazy rational arithmetic-a detailed implementation. In Proceeding of the 2nd Symposium on Solid Modeling and Applications, pages 115–126, 1993.

    Google Scholar 

  5. H. J. Boehm and R. Cartwright. Exact real arithmetic: Formulating real numbers as functions. In Turner. D., editor, Research Topics in Functional Programming, pages 43–64. Addison-Wesley, 1990.

    Google Scholar 

  6. H. J. Boehm, R. Cartwright, M. Riggle, and M. J. O’Donnell. Exact real arithmetic: A case study in higher order programming. In ACM Symposium on Lisp and Functional Programming, 1986.

    Google Scholar 

  7. V. Brattka and K. Weihrauch. Computability on subsets of Euclidean space I: Closed and compact subsets. Theoretical Computer Science, 219:65–93, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Brönimann, J. Emiris, V. Pan, and S. Pion. Computing exact geometric predicates using modular arithmetic with single precision. ACM Conference on Computational Geometry, 1997.

    Google Scholar 

  9. H. Brönnimann and M. Yvinec. Efficient exact evaluation of signs of determinants. In Proc. Thirteenth ACM Symposium on Computational Geometry, pages 136–173, June 1997.

    Google Scholar 

  10. L. E. J. Brouwer. Besitzt jede reelle zahl eine dezimalbruchentwicklung? Math Ann, 83:201–210, 1920.

    Article  MathSciNet  Google Scholar 

  11. O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Algebraic methods and arithmetic filtering for exact predicates on circle arcs. In Proc. Sixteenth ACM Symposium on Computational Geometry, pages 139–147, June 2000.

    Google Scholar 

  12. P. Di Gianantonio. A functional approach to real number computation. PhD thesis, University of Pisa, 1993.

    Google Scholar 

  13. P. Di Gianantonio. Real number computability and domain theory. Information and Computation, 127(1):11–25, May 1996.

    Google Scholar 

  14. A. Edalat and A. Lieutier. Foundation of a computable solid modeling. In Proceedings of the fifth symposium on Solid modeling and applications, ACM Symposium on Solid Modeling and Applications, pages 278–284, 1999. Full paper to appear in TCS.

    Google Scholar 

  15. A. Edalat, A. Lieutier, and E. Kashefi. The convex hull in a new model of computation. In Proc. 13th Canad. Conf. Comput. Geom., pages 93–96, 2001.

    Google Scholar 

  16. A. Edalat and P. J. Potts. A new representation for exact real numbers. In Proceedings of Mathematical Foundations of Programming Semantics 13, volume 6 of Electronic Notes in Theoretical Computer Science. Elsevier Science B. V., 1997. Available from URL: http://www.elsevier.nl/locate/entcs/volume6.html.

  17. A. Edalat, P. J. Potts, and P. Sünderhauf. Lazy computation with exact real numbers. In Proceedings of the Third ACM SIGPLAN International Confrence on Functional Programming, pages 185–194. ACM, 1998.

    Google Scholar 

  18. A. Edalat and P. Sünderhauf. A domain theoretic approach to computability on the real line. Theoretical Computer Science, 210:73–98, 1998.

    Article  Google Scholar 

  19. H. Edelsbrunner and E. P. Mucke. Simulation of simplicity-a technique to cope with degenerate cases in geometric algorithms. In Proceeding of the 4th ACM Annual Symposium on Computational Geometry, pages 118–133, 1998.

    Google Scholar 

  20. M. H. Escardó. PCF extended with real numbers. Theoretical Computer Science, 162(1):79–115, August 1996.

    Google Scholar 

  21. S. Fang, B. Bruderlin, and X. Zhu. Robustness in solid modeling: a tolerance-based intuitionistic approach. Computer-Aided Design, 25(9):567–577, 1993.

    Article  MATH  Google Scholar 

  22. S. Fortune. Polyhedral modeling with multi-precision integer arithmetic. Computer-Aided Design, 29(2):123–133, 1997.

    Article  MathSciNet  Google Scholar 

  23. S. Fortune and C. von Wyk. Efficient exact arithmetic for computational geometry. In Proceeding of the 9th ACM Annual Symposium on Computational Geometry, pages 163–172, 1993.

    Google Scholar 

  24. W. Gosper. Continued Fraction Arithmetic. HAKMEM Item 101B, MIT Artificial Intelligence Memo 239. MIT, 1972.

    Google Scholar 

  25. L. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry-building robust algorithms for imprecise computations. In Proceeding of the 5th ACM Annual Symposium on Computational Geometry, pages 208–217, 1989.

    Google Scholar 

  26. R. Heckmann. The appearance of big integers in exact real arithmetic based on linear fractional transformations. In Proc. Foundations of Software Science and Computation Structures (FoSSaCS’ 98), volume 1378 of LNCS, pages 172–188. Springer-Verlag, 1998.

    Chapter  Google Scholar 

  27. R. Heckmann. Big integers and complexity issues in exact real arithmetic. In Third Comprox workshop (Sept. 1997 in Birmingham), volume 13 of Electronic Notes in Theoretical Computer Science, 1998. URL: http://www.elsevier.nl/locate/entcs/volume13.html.

  28. R. Heckmann. Contractivity of linear fractional transformations. In J.-M. Chesneaux, F. Jézéquel, J.-L. Lamotte, and J. Vignes, editors, Third Real Numbers and Computers Conference (RNC3), pages 45–59, April 1998. An updated version will appear in TCS.

    Google Scholar 

  29. R. Heckmann. Translation of Taylor series into LFT expansions. Submitted to Proceedings of Dagstuhl Seminar “Symbolic Algebraic Methods and Verification Methods”, November 1999.

    Google Scholar 

  30. R. Heckmann. How many argument digits are needed to produce n result digits? In RealComp’ 98 Workshop (June 1998 in Indianapolis), volume 24 of Electronic Notes in Theoretical Computer Science, 2000. URL: http://www.elsevier.nl/locate/entcs/volume24.html.

  31. C. M. Hoffmann. The problems of accuracy and robustness in geometric computation. IEEE Comput., 22(3):31–41, 1989.

    Google Scholar 

  32. C. Y. Hu, T. Maekawa, E. C. Shebrooke, and N. M. Patrikalakis. Robust interval algorithm for curve intersections. Computer-Aided Design, 28(6/7):495–506, 1996.

    Article  Google Scholar 

  33. C. Y. Hu, N. M. Patrikalakis, and X. Ye. Robust interval solid modeling, part i: representations. CAD, 28:807–818, 1996.

    Google Scholar 

  34. C. Y. Hu, N. M. Patrikalakis, and X. Ye. Robust interval solid modeling, part ii: boundary evaluation. CAD, 28:819–830, 1996.

    Google Scholar 

  35. V. Stoltenberg-Hansen J. Blanck and J. V. Tucker. Domain representations of partial functions, with applications to spatial objects and constructive volume geometry. Theoretical Computer Science. To appear.

    Google Scholar 

  36. D. Jackson. Boundary representation modeling with local tolerances. In ACM Symposium on Solid Modeling and Applications, pages 247–253, 1995.

    Google Scholar 

  37. M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulation using rational arithmetic. ACM Trans. Graphics, 10:71–91, 1991.

    Article  Google Scholar 

  38. A. A. Khanban, A. Edalat, and A. Lieutier. Delaunay triangulation and Voronoi diagram with imprecise input data. Submitted. Available from http://www.doc.ic.ac.uk/~khanban/.

  39. M. Konecny. Many-valued Real Functions Computable by Finite Transducers using IFS Representations. PhD thesis, School of Computer Science, University of Birmingham, 2000. Available via URL http://www.cs.bham.ac.uk/~axj/former-students.html.

  40. V. Menissier-Morain. Arbitrary precision real arithmetic: design and algorithms, submitted to J. Symbolic Computation, 1996.

    Google Scholar 

  41. T. Ottmann, G. Thiemt, and C. Ullrich. Numerical stability of geometric algorithms. In Proceeding of the 3rd ACM Annual Symposium on Computational Geometry, pages 119–125, 1987.

    Google Scholar 

  42. D. Plume. A calculator for exact real number computation. Available from http://www.dcs.ed.ac.uk/home/mhe/plume/index.html, 1998.

  43. P. J. Potts. Efficient on-line computation of real functions using exact floating point. Available from:http://www.purplefinder.com/~potts, 1997.

  44. P. J. Potts. Exact Real Arithmetic Using Mobius Transformations. PhD thesis, Imperial College, 1998. Available from: http://www.purplefinder.com/~potts.

  45. P. J. Potts and A. Edalat. Exact Real Arithmetic based on Linear Fractional Transformations, December 1996. Draft, Imperial College, available from http://www-tfm.doc.ic.ac.uk/~pjp.

  46. P. J. Potts and A. Edalat. Exact Real Computer Arithmetic, March 1997. Department of Computing Technical Report DOC 97/9, Imperial College, available from http://theory.doc.ic.ac.uk/~ae.

  47. P. J. Potts, A. Edalat, and M. Escardó. Semantics of exact real arithmetic. In Twelfth Annual IEEE Symposium on Logic in Computer Science. IEEE, 1997.

    Google Scholar 

  48. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-Verlag, 1988.

    Google Scholar 

  49. T. W. Sederberg and R. T. Farouki. Approximation by interval Bezier curves. IEEE Comput. Graph. Appl., 15(2):87–95, 1992.

    Article  Google Scholar 

  50. M. Segal. Using tolerances to guarantee valid polyhedral modeling results. Computer Graphics, 24(4):105–114, 1990.

    Article  Google Scholar 

  51. K. Sugihara. A simple method for avoiding numerical errors and degeneracy in Voronoi diagram construction. IEICE Trans. Fundamentals, 1992.

    Google Scholar 

  52. K. Sugihara. A robust and consistent algorithm for intersecting convex polyhedra. In Computer Graphics Forum, EUROGRAPHICS’94, pages C-45–C-54, 1994.

    Google Scholar 

  53. K. Sugihara. Experimental study on acceleration of an exact-arithmetic geometric algorithm. In Proceeding of the International Conference on Shape Modeling and Applications, pages 160–168, 1997.

    Google Scholar 

  54. K. Sugihara. How to make geometric algorithms robust. IEICE Trans. Inf. & Syst., E833-D(3):447–454, 2000.

    Google Scholar 

  55. K. Sugihara and M. Iri. Construction of the Voronoi diagram for one million generators in single-precision arithmetic. Proc. IEEE, 80:1471–1484, 1992.

    Article  Google Scholar 

  56. K. Sugihara and M. Iri. A robust topology-oriented incremental algorithm for Voronoi diagrams. International Journal of Computational Geometry and Applications, pages 179–228, 1994.

    Google Scholar 

  57. J. E. Vuillemin. Exact real computer arithmetic with continued fractions. IEEE Transactions on Computers, 39(8):1087–1105, 1990.

    Article  MathSciNet  Google Scholar 

  58. K. Weihrauch. Computability, volume 9 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1987.

    Google Scholar 

  59. K. Weihrauch. A foundation for computable analysis. In D.S. Bridges, C.S. Calude, J. Gibbons, S. Reeves, and I.H. Witten, editors, Combinatorics, Complexity, and Logic, Discrete Mathematics and Theoretical Computer Science, pages 66–89, Singapore, 1997. Springer-Verlag. Proceedings of DMTCS’96.

    Google Scholar 

  60. C. Yap. A geometric consistency theorem for a symbolic perturbation theorem. In Proc. Fourth ACM Symp. on Computer Geometry, pages 134–142, June 1988.

    Google Scholar 

  61. C. K. Yap. The exact computation paradigm. In D. Z. Du and F. Hwang, editors, Computing in Euclidean Geometry. World Scientific, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edalat, A., Heckmann, R. (2002). Computing with Real Numbers. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds) Applied Semantics. APPSEM 2000. Lecture Notes in Computer Science, vol 2395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45699-6_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45699-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44044-4

  • Online ISBN: 978-3-540-45699-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics